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Abstract

We study N -player optimal execution games in an Obizhaeva–Wang model of tran-
sient price impact. When the game is regularized by an instantaneous cost on the
trading rate, a unique equilibrium exists and we derive its closed form. Whereas with-
out regularization, there is no equilibrium. We prove that existence is restored if (and
only if) a very particular, time-dependent cost on block trades is added to the model.
In that case, the equilibrium is particularly tractable. We show that this equilibrium
is the limit of the regularized equilibria as the instantaneous cost parameter ε tends to
zero. Moreover, we explain the seemingly ad-hoc block cost as the limit of the equilib-
rium instantaneous costs. Notably, in contrast to the single-player problem, the optimal
instantaneous costs do not vanish in the limit ε → 0. We use this tractable equilibrium
to study the cost of liquidating in the presence of predators and the cost of anarchy.
Our results also give a new interpretation to the erratic behaviors previously observed
in discrete-time trading games with transient price impact.
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1 Introduction
Transactions costs are significant for institutional-size trades; e.g., [24] reports 35 basis points
as a typical cost to trade large cap stocks, and more for less liquid securities. The lion’s
share, about 30 basis points, are attributed to price impact—the fact that sizable orders
push prices. This dislocation of the price is persistent but decays at a time scale relevant for
execution problems (see [19] and the references therein). The most tractable model capturing
this transient price impact is the Obizhaeva–Wang model [28]; see also [13]. Here each buy
pushes the price up proportionally to the size of the trade and the dislocation reverts back
exponentially over time. Similarly for sells; see Section 2 for details and [7, 16, 38] for more
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background and references. By contrast, the classic Almgren–Chriss model [2] features an
instantaneous price impact proportional to the trading rate which disappears immediately
when trading stops, as well as permanent impact which does not decay. The instantaneous
impact amounts to a quadratic cost ε

∫ T

0
v2t dt on the trading rate vt, where ε > 0. In the

Almgren–Chriss model, the optimal execution problem of unwinding x shares over a time in-
terval [0, T ] has the TWAP strategy as its solution (assuming risk neutrality), meaning that
the trading rate is constant. Whereas in the Obizhaeva–Wang model, in addition to a con-
stant trading rate throughout the interval, block trades are placed at the initial and terminal
times. The initial block trade jump-starts the resilience whereas the terminal trade arises
because there is no subsequent trading that would suffer from the impact. From a stochastic
control perspective, it is sometimes easier to work with absolutely continuous trading strate-
gies. Starting with [15, 18], numerous works have added a quadratic instantaneous cost on
the trading rate to the Obizhaeva–Wang impact cost. As illustrated in [18, Figure 1], this
“regularizes” the problem and leads to a smoothing of the optimal execution strategy: for
small instantaneous cost parameter ε, the block trades are approximated by fast continuous
trading. On a more applied note, it has been argued that block trades are not realistic in lit
venues such as central limit order books. However, execution models are generally used to
determine trade schedules—i.e., the approximate schedule of how the order will be worked
over time (e.g., [3])—rather than order routing. The original strategy and the smoothed
one are comparable in terms of the child order sizes implied for reasonably-sized time bins.
Meanwhile, the Obizhaeva–Wang formulation often yields simpler analytic expressions, as
emphasized in [38].

The present paper studies optimal execution in a competitive setting, where early works
include [6, 29, 34, 35]. We consider N risk-neutral agents trading a security over a given time
interval [0, T ]. Endowed with initial inventory xi, agent i seeks to maximize their expected
profit or loss and end with flat inventory. If xi is positive or negative, the agent has an
exogenous reason to sell or buy, whereas if xi = 0, the agent is in the market only to prey
on other traders. Agents interact through the security’s price as each agent’s actions impact
the price according to the Obizhaewa–Wang model; in the absence of their actions, the price
would follow a martingale. This is the natural, “naive” formulation of an N -player game
extending the single-player problem of optimal execution in the Obizhaewa–Wang model. In
fact, we will see that it admits no equilibrium except in trivial cases. We shall shed light
on this fact and show how to restore existence by adding a particular cost to block trades,
under which a tractable equilibrium emerges. More precisely, we prove that there are unique
block cost parameters leading to existence, whereas all other choices lead to non-existence
(Theorem 4.4). Mathematically, this “correct” cost can be determined from the first-order
condition. While that cost initially appears as an unprincipled ad-hoc fix, the subsequent
results will give a deeper meaning to it.

The aforementioned regularized version of the Obizhaeva–Wang model, with an addi-
tional quadratic instantaneous cost ε

∫ T

0
v2t dt on the trading rate vt, has been used successfully

in the game literature. Indeed, [37] shows existence and uniqueness of a Nash equilibrium.
The derivation highlights the mathematical significance of the regularization: the first-order
condition for the equilibrium boils down to a Fredholm equation of the second kind; a type of
equation that is well-posed under general conditions (in contrast to the first kind appearing
in [17]). This equation also leads to an expression for the equilibrium, which however still
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requires numerical evaluation. In the present paper, while not our primary objective, we
add to this literature by providing the solution in fully closed form (see Theorem 3.5 for
this model with liquidation constraint, and Theorem 3.2 for an additional model allowing
incomplete execution). The derivation is admittedly a tour de force, but it enables a fine
downstream analysis (in addition to making numerical implementation trivial). We mention
that the work of [37] has been generalized in several directions, such as incorporating alpha
signals [27], alpha signals and non-exponential decay kernels [1] or self-exciting order flow
[14]. All these works make crucial use of the regularization by instantaneous cost. While the
fixed parameter ε > 0 can be arbitrarily small, it is not obvious what exactly this regular-
ization is approximating. The present work aims to shed light on that. A separate stream of
literature restricts trading to a discrete set of dates, which can be seen as a different type of
regularization. This literature is closely related to our main results, hence discussed in more
detail in Section 1.1 below.

In the single-player execution problem discussed in the first paragraph, the solution of
the regularized version converges to the unregularized one for ε → 0, as one would expect
(see [18, 20]). Moreover, one can check that the regularizing instantaneous cost ε

∫ T

0
v2t dt

(with v depending on ε) converges to zero as ε → 0. The game turns out to be markedly
different, as can already be gleaned from the aforementioned non-existence of equilibria for
the naive formulation. In fact, the instantaneous cost ε

∫ T

0
v2t dt of a typical agent in the

regularized equilibrium no longer converges to zero. Financially, this is testament to the
competition which causes more aggressive trading in the game case. Mathematically, it
suggests that the correct limiting game incorporates an additional cost relative to the naive
formulation. Indeed, we show that the instantaneous cost converges exactly to the block
cost that uniquely gives existence of equilibria, thus explaining the seemingly ad-hoc cost
coefficient (Theorem 5.1).

Analogously to the single-player case, the equilibrium of the limiting model with block
costs is very tractable. We use its expression for the equilibrium impact cost to compare
with the single-player case. First, we study the cost of anarchy; i.e., the increase in cost
due to competition relative to the strategy that a central planner would use (Section 6.1).
Second, we show how the presence of N − 1 predators (traders with zero initial inventory)
increases the cost for an agents that needs to unwind inventory (Section 6.2). In both cases,
the cost increases with N , but the increase tapers out as N gets large.

1.1 Further Related Literature

As mentioned above, restricting trading to a discrete set of dates can be seen as a kind of
regularization of a continuous-time model. The thesis [34] was the first to consider a game
in the Obizhaewa–Wang model, for N = 2 traders. When trading at discrete dates, it was
observed that equilibrium exists but consists of erratic strategies (e.g., an agent might sell
the entire initial inventory at the first date and buy it back the next date). Moreover, in the
high-frequency limit where the gaps between the trading dates tend to zero, the equilibria
oscillate and do not converge. This phenomenon is further studied (mostly numerically) in
[33] for more general decay kernels. Here it is shown that introducing additional trading costs
can dampen the oscillations and reduce equilibrium trading costs, which is interpreted as
friction providing protection against predatory trading. In a similar framework but focusing
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on the Obizhaewa–Wang model (and still with N = 2 traders), [31] provides a detailed
analytic study which is closely related to the present results. It is shown that oscillations are
suppressed if sufficiently large additional trading costs are introduced, and in that case the
high-frequency limit exists. Intuitively, high frequency is akin to small instantaneous cost.
In [31] the authors further consider a model with continuous trading and additional block
costs. It is shown that an equilibrium exists when a particular block cost is charged at the
initial and terminal time, and in that case, the equilibrium coincides with the aforementioned
high-frequency limit. The equilibrium is precisely the one of Theorem 4.4 in the particular
case N = 2. In [31] it is not discussed directly if the two equilibrium block costs arise as
the limits of the added costs in the discrete model, but this can be conjectured based on our
Theorem 5.1. As can be seen in Theorem 4.4, the case N = 2 is unique in that the same
block cost is charged at the initial and terminal time, whereas for N > 2 the initial cost is
larger and depends on N . In particular, N = 2 is the only case that allows for a cost that is
not time-dependent.

The follow-up work [23] studies an N -player game related to the one of [31]. Instead of
having a liquidation constraint, agents unwind their inventory because they have a (mean-
variance or exponential) utility function: holding the martingale asset causes disutility, in-
centivizing liquidation. The discrete-time equilibrium is obtained analytically whereas for
the high-frequency limit, only a numerical study is performed. Based on the numerics, it is
conjectured that two different critical values for the additional trading cost suppress oscilla-
tions in the particular cases where all initial inventories are equal or add up to zero. On the
other hand, there is no value that works for general inventories, suggesting that the limit
in this model does not exist. The two values coincide with the ones in our analytic result
(Theorem 4.4). We infer from our result that the key to resolving the non-existence is a
time-dependent additional cost, which has not been considered before.

After explaining that the proof technique of [31] does not extend to N > 2 players,
the theoretical asymptotic results in [23] are stated in a slightly different model. Instead
of a high-frequency limit, trading takes places at integer dates with time horizon T = ∞.
Absence of a (finite) horizon circumvents block trades at T and—from the perspective of
our results—the necessity to identify a different block cost at T . The authors show that an
equilibrium exists for a particular choice of cost parameter (indeed the same as the additional
cost at t = 0 in our model). Several conjectures about non-existence for different values are
stated, which are all confirmed by our sharp results. The connection with the prelimit (i.e.,
sending T → ∞) is not made in [23], but we can readily conjecture the results based on
ours. In fact, in retrospect, our results suggest that it should be possible to obtain a full
extension of the high-frequency limit of [31] to N > 2 players without sending T → ∞.
Namely, introducing a time-dependent additional cost, we would expect convergence to the
equilibrium identified in Theorem 4.4.

The remainder of this paper is organized as follows. Section 2 formulates in detail
the stochastic games to be considered: with instantaneous cost on trading rate and ei-
ther a penalty on leftover inventory (A) or full liquidation constraint (A′), and the limiting
model (B) with block cost (but no cost on the trading rate). We also include the uniqueness
of Nash equilibria in Section 2.1; this statement applies to all formulations under considera-
tion. Section 3 summarizes the main results for the models with instantaneous cost. First,
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Section 3.1 describes the equilibrium for game A with penalty on leftover inventory. This
problem can be approached directly by variational methods. Then, Section 3.1 treats game
A′ where full liquidation is imposed as a constraint. Mathematically, we construct the equi-
librium of the constrained problem from the former by letting the penalty tend to infinity.
Both sections provide closed-form expressions for the equilibrium trading strategies and costs.
Section 4 describes the model B with block cost, giving a full characterization of existence
(or non-existence) of equilibria depending on the block cost parameters. When it exists, the
equilibrium and its costs are found in closed form. Section 5 shows how the model with block
costs arises as the limit of model A′ when the instantaneous cost tends to zero. Section 6
discusses the cost of anarchy and the cost of predation. Section 7 concludes and comments on
follow-up research. Appendix A details some (reasonably standard) notational conventions
while Appendix B summarizes properties of Gateaux derivatives and Γ-convergence that are
use in the proofs. As the main proofs are lengthy, they are not included in the body of the
paper. Appendix C contains the proofs for Section 2, Appendix D contains the proofs for
Section 3, Appendix E contains the proofs for Section 4, and Appendix F contains the proofs
for Section 5. (There is no appendix for Section 6 as the calculations are straightforward.)
Last but not least, Appendix G contains Table 1, a collection of constants that we introduced
to shorten the otherwise unwieldy formulas in the main results.

2 N-Player Game Formulation
We consider a market on a filtered probability space (Ω,F ,F,P) satisfying the usual con-
ditions. In this market there are N traders and a single asset. We index the traders by
i ∈ {1, . . . , N} and denote their inventory processes by X i = (X i

t)t≥0, where X i
t indicates

the number of shares held by trader i at time t. Each trader i is endowed with initial holdings
X i

0− = xi ∈ R to be unwound by the common terminal time T > 0. More precisely, we shall
consider problems where a liquidation constraint X i

T = 0 is enforced as well as problems
where terminal inventory is merely penalized by a cost.

Definition 2.1. We say that X i = (X i
t)t≥0 is an admissible inventory process for trader i if:

(i) X i is càdlàg and predictable.

(ii) The paths t 7→ X i
t have (P-essentially) bounded total variation.

(iii) X i
0− = xi and X i

t is constant for t ≥ T .

We assume that the unaffected asset price—which is the price that would obtain if the
N agents did not trade—evolves according to a càdlàg local martingale, P = (Pt)t≥0 whose
quadratic variation satisfies E[[P, P ]T ] < ∞. To describe the actual price, we define the
impact process I = (It)t≥0 through the generalized Obizhaeva–Wang dynamics

dIt = −βItdt+ λ

N∑
i=1

dX i
t , I0− = 0,

5



for push and resilience parameters λ, β > 0. Hence,

It = λ

∫ t

0

e−β(t−s)

N∑
i=1

dX i
s,

and we define the affected price S = (St)t≥0 through

St = Pt + It, t ≥ 0.

Here and throughout the paper,
∫ b

a
:=
∫
[a,b]

(cf. Appendix A), and the “a.s.” qualifier is
suppressed.

Let ∆X i
t := X i

t−X i
t−. We define the impact cost associated with the admissible inventory

processes X = (X1, . . . , XN) in the following way. For trader i, the net proceeds or outlays
from trading are ∫ T

0

St−dX
i
t +

1

2

∑
t∈[0,T ]

∆St∆X
i
t . (2.1)

This says that continuous trading at time t transacts at the price St− while a block trade of
size ∆X i

t additionally realizes half the price dislocation at t and has a final execution price
of

St− +
1

2
∆St =

1

2
(St− + St).

This can be interpreted as trader i obtaining the average execution price of all trades happen-
ing at t (rather than the marginal price at t−). Implicitly, the above definitions also govern
what happens when several agents trade at the same time. In some works, including [31]
concerned with the case N = 2, ties are explicitly broken randomly: when two agents place
a block trade at the same time, a coin flip decides which trade is settled first. The present
definitions are equivalent (in term of expected costs) but shorter to write, especially in the
N -player case. See also [38] for a related discussion.

In some of the problems below we allow for the possibility that a trader’s inventory has
not been entirely unwound by time T . As a result, we must account for the change in value
of their holdings over [0, T ]. To this end, we add to the execution costs the change in the
marked-to-market value of their holdings,

X i
0−P0− −X i

TPT . (2.2)

As is standard in the literature (e.g., [26, 27]), we use the unaffected price P for inventory
valuation.1 If the terminal inventory is constrained to be zero this additional accounting
amounts to adding a constant to the trader’s cost, hence has no effect on their optimal
strategy.

On top of the impact cost, we also consider additional trading and terminal costs. Let
χE be the characteristic function of a set E ∈ F ,

χE(ω) =

{
∞ ω ∈ E,

0 otherwise,

1This convention exists, at least in part, to remedy the loss of convexity (see Lemma 2.5) that can arise
when the reference price is instead taken to be ST .
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and write {dX i ≪ dt} for the set of ω ∈ Ω on which the measure associated with the bounded
variation function t 7→ X i

t(ω) is absolutely continuous with respect to Lebesgue measure.

Cost A. In our first problem formulation, indexed by the symbol A, we penalize fast
(absolutely continuous) trading with an “instantaneous cost” and levy a terminal inventory
penalty. The induced cost is

CA(X
i) :=

ε

2

∫ T

0

(Ẋ i
t)

2dt+ χ{dXi≪dt}c +
φ

2
(X i

T )
2, (2.3)

where ε, φ > 0 and Ẋ i
t is the derivative2 of t 7→ X i

t . The characteristic function means that
discontinuous or singular continuous controls3 incur infinite costs.

Cost A′. In the second formulation, indexed A′, we modify the above to enforce the hard
constraint that all inventory be liquidated by T ,

CA′(X i) :=
ε

2

∫ T

0

(Ẋ i
t)

2dt+ χ{dXi≪dt}c + χ{Xi
T ̸=0}. (2.4)

Formally, this corresponds to setting φ = ∞ in (2.3).

Cost B. In our final variant, indexed B, trading need not be absolutely continuous. We
charge a (deterministic but possibly time-dependent) cost ϑt/2 > 0 on block trades and
enforce inventory liquidation,

CB(X
i) :=

1

2

∑
t∈[0,T ]

ϑt(∆X
i
t)

2 + χ{Xi
T ̸=0}. (2.5)

To unify the statements below, we use the symbol · as a placeholder for the type of cost
(A,A′ or B). Combining the additional cost C· with the impact cost (2.1) and the value (2.2)
of the terminal inventory, trader i has the following objective function if we fix the actions
X−i = (X1, . . . , X i−1, X i+1, . . . , XN) of the other players,

J·(X
i;X−i) = E

∫ T

0

St−dX
i
t +

1

2

∑
t∈[0,T ]

∆St∆X
i
t + (X i

0−P0− −XTPT ) + C·(X
i)

 . (2.6)

The aim of trader i is to minimize J·(X i,X−i). The next proposition uses the martingale
property of the unaffected price and provides a more explicit formula for this quantity.

2This is assured to exist dt-almost everywhere.
3i.e., controls t 7→ Xi

t whose Lebesgue decomposition on any [0, t0] ⊂ R+ has singular continuous or
purely discontinuous components.
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Proposition 2.2. The objective function J·(X
i;X−i) can be written

J·(X
i;X−i) = E

∫ T

0

It−dX
i
t +

1

2

∑
t∈[0,T ]

∆It∆X
i
t + C·(X

i)

 (2.7)

= λE

[
1

2

∫ T

0

∫ T

0

e−β|t−s|dX i
sdX

i
t +

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dXj
sdX

i
t

+
1

2

∑
j ̸=i

∑
t∈[0,T ]

∆Xj
t∆X

i
t

]
+ E

[
C·(X

i)

]
. (2.8)

The proof is given in Appendix C.1. Next, we formally define the Nash equilibria to be
studied below.

Definition 2.3. A strategy profile X∗ = (X∗,1, . . . , X∗,N) is a Nash equilibrium for J· if:

(i) X∗,i is admissible for all i = 1, . . . , N .

(ii) For all admissible strategies Z and all i = 1, . . . , N ,

J·(Z;X
∗,−i) ≥ J·(X

∗,i;X∗,−i). (2.9)

We say that X∗ is a Nash equilibrium in the class of deterministic strategies if X∗,i is
admissible and deterministic for all i, and (2.9) holds for all admissible and deterministic Z.
Similar terminology applies for other subsets of admissible strategies.

2.1 Uniqueness

The remainder of this section focuses on the uniqueness of equilibria (regardless of existence)
and is valid for all three types of cost.

Proposition 2.4. There is at most one Nash equilibrium.

The proof is detailed in Appendix C.2. While technical, it essentially extends the argu-
ments in [31, Proposition 4.8] to our setting. A key ingredient is the strict convexity of the
objective.

Lemma 2.5. For any admissible X−i, the objective J·( · ;X−i) is strictly4 convex in its first
argument.

The proof of Lemma 2.5 is analogous to [31, Lemma 4.7] and omitted. The last result of
this section states that an equilibrium in the class of deterministic strategies is also an equi-
librium in the larger class of all admissible strategies. To wit, if (2.9) holds for deterministic
competitors Z, then it automatically holds for general Z.

4An extended real-valued convex function F is called strictly convex if it is strictly convex on its domain
dom(F ) = {h : F (h) < ∞}.
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Lemma 2.6. A Nash equilibrium in the class of deterministic strategies is a Nash equilibrium
(in the class of admissible strategies).

The proof is similar to [31, Lemma 4.9] and omitted. Lemma 2.6 allows us to restrict
to deterministic strategies in parts of the subsequent analysis: if we can find a unique
deterministic equilibrium, then Lemma 2.6 assures that it is also the unique equilibrium in
the larger class of admissible strategies. (It does not assure the reverse: novel arguments
will be necessary to see that non-existence of deterministic equilibria implies non-existence
in general.)

3 Equilibria with Instantaneous Costs
We begin by finding the unique equilibria in the cases where the additional costs are given by
CA(·) and CA′(·). That is, in addition to price impact, trading is subject to an instantaneous
cost with coefficient ε > 0, and there is either a cost on terminal inventory or terminal
inventory is required to be zero.

As noted above, we can begin our search by focusing on deterministic strategies. From the
form of the costs it is clear that we can further focus on inventory processes with Ẋ i

t ∈ L2[0, T ]
for all i. Therefore, it suffices to take

X i
t = xi +

∫ t

0

visds, t ∈ [0, T ], i = 1, . . . , N, (3.1)

for vi ∈ L2[0, T ]. This allows us to parametrize the strategy profile through the auxiliary
controls v = (v1, . . . , vN). Then, by (2.7) we can write J·(X i;X−i) in terms of the impact
process which now has the simplified form

It = λ

∫ t

0

e−β(t−s)

N∑
j=1

vjsds, t ∈ [0, T ].

As a result, the optimization of the objective (2.6) can be recast as minimizing

JA(v
i;v−i) =

∫ T

0

Itv
i
t +

ε

2
(vit)

2dt+
φ

2
(X i

T )
2, (3.2)

or, respectively,

JA′(vi;v−i) =

∫ T

0

Itv
i
t +

ε

2
(vit)

2dt+ χ{Xi
T ̸=0}, (3.3)

over vi ∈ L2[0, T ]. Notably, the transformed objectives remain (strictly) convex on their
domains. We will leverage the Hilbert space structure afforded by this reparametrization to
arrive at a complete characterization of the equilibria. For the proofs of the statements in
the remainder of this section, see Appendix D.
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3.1 Terminal Inventory Penalty

Variational arguments in L2[0, T ] allow us to characterize the equilibrium for the cost JA

in terms of the (unique) solution to a 2N + 1 dimensional system of linear homogeneous
ordinary differential equations (ODEs).

Lemma 3.1. The strategy profile v defines a Nash equilibrium for JA if and only if it forms,
along with I and auxiliary processes Y 1, . . . , Y N , a solution to the ODE system

İt = −βIt + λ
N∑
i=1

vit,

Ẏ i
t = βY i

t − λvit, i = 1, . . . , N,

v̇it = ε−1

[
βIt − βY i

t − λ
∑
j ̸=i

vjt

]
, i = 1, . . . , N,

subject to the initial and terminal conditions

I0 = 0, Y i
T = 0, viT = −ε−1

[
φX i

T + IT
]
, i = 1, . . . , N.

While admittedly a tour de force (deferred to Section D.1.2), it turns out that this system
can be solved in fully closed form. Thus we arrive at an explicit characterization of the Nash
equilibrium for JA and hence, through (3.1), also for the general objective JA. It turns out
that the strategies depend linearly on the mean starting inventory,

x =
1

N

N∑
i=1

xi,

and the individual deviations from the mean. Since the expression for the solution is lengthy,
the following theorem makes use of simplifying constants z1, z2, z3, γ1, γ2, ρ0, and ρ± whose
definitions can be found in Table 1.

Theorem 3.2. There is a unique Nash equilibrium for JA. Its equilibrium strategy profile
X∗ = (X∗,1, . . . , X∗,N) is

X∗,i
t = ft(x

i − x) + gtx, t ∈ [0, T ], i = 1, . . . , N,

where

ft = 1−

[
βt+ λ(ez3t−1)

εz3ez3T

]
φ

εz3 +
[
βT + λ(ez3T−1)

εz3ez3T

]
φ
,

gt = 1−

[
βρ−t+

ez1t−1
z1

− γ1
γ2

(ez2t−1)
z2

]
φ

ε(ρ0 + βρ−) + λN(ρ+ + ρ−) +
[
βρ−T + ez1T−1

z1
− γ1

γ2
ez2T−1

z2

]
φ
.

We can use this explicit solution to compute the equilibrium cost. We report the result
in terms of additional simplifying constants ψ, ξ, p, and hj (j = 1, . . . , 5) whose definitions
are provided in Table 1.
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Corollary 3.3. The equilibrium cost for the traders can be written as

JA(X
∗,i;X∗,−i) =

∫ T

0

It−dX
∗,i
t +

ε

2

∫ T

0

(Ẋ∗,i
t )2dt+ φ(X∗,i

T )2, i = 1, . . . , N,

in terms of the equilibrium impact cost∫ T

0

It−dX
∗,i
t =

λNφ2

ε2

[
h1
ψ2
x2 +

h2
ξψ

(xi − x)x

]
,

equilibrium instantaneous cost

ε

2

∫ T

0

(Ẋ∗,i
t )2dt =

φ2

ε

[
h3
2ψ2

x2 +
h4
2ξ2

(xi − x)2 +
h5
ξψ
x(xi − x)

]
,

and equilibrium terminal penalty

φ(X∗,i
T )2 = φ

[
p2

ψ2
x2 +

z23
ξ2
(xi − x)2 +

2z3p

ξψ
(xi − x)x

]
.

3.2 Liquidation Constraint

To find the unique equilibrium associated with the cost JA′ enforcing full liquidation at T ,
we argue that it coincides with the limit of the equilibrium in Theorem 3.2 as the penalty
on terminal inventory tends to infinity, φ ↑ ∞.

Lemma 3.4. If the Nash equilibrium X∗ from Theorem 3.2 converges in H1[0, T ]×N as
φ ↑ ∞, then the limit is a Nash equilibrium for JA′ and the equilibrium costs in Corollary 3.3
converge to the equilibrium costs for JA′.

The proof in Appendix D.2.1 is based on the Γ-convergence of JA(·;v∗,−i(φ)) to JA′(·; ṽ−i)
as φ ↑ ∞, where v∗(φ) denotes the equilibrium for finite φ and ṽ its limit.

Using Lemma 3.4, we can deduce a characterization of the equilibrium by passing to
the limit in Theorem 3.2. As mentioned in the introduction, our result provides a closed-
form solution to the game previously studied in [37]. See Table 1 for the definitions of the
simplifying constants.

Theorem 3.5. There is a unique Nash equilibrium for JA′. Its equilibrium strategy profile
X∗ = (X∗,1, . . . , X∗,N) is

X∗,i
t = ft(x

i − x) + gtx, t ∈ [0, T ], i = 1, . . . , N,

where

ft = 1−
βt+ λ(ez3t−1)

εz3ez3T

βT + λ(ez3T−1)

εz3ez3T

, gt = 1−
βρ−t+

ez1t−1
z1

− γ1
γ2

ez2t−1
z2

βρ−T + ez1T−1
z1

− γ1
γ2

ez2T−1
z2

.

Moreover, this is the H1[0, T ]×N limit of the equilibrium strategy profile in Theorem 3.2 as
φ ↑ ∞.
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Figure 1: Convergence of the equilibrium in Theorem 3.2 to that of Theorem 3.5 as φ ↑
∞ when λ = 0.2, ε = 0.05, T = 1, and N = 3. The three colors represent the three
agents and range from light to dark as φ increases (φ = 1, 2, 5,∞). The darkest colors
are used for the limiting values corresponding to the liquidation constraint. (Left Panel)
Equilibrium strategies X∗,i

t as a function of t for β = 1. (Right Panel) Equilibrium costs
from Corollaries 3.3 and 3.6 as a function of β.

An inspection of the proof in Appendix D.2.2 actually gives the stronger result that the
equilibria of Theorem 3.2 and their derivatives of all orders converge uniformly on [0, T ] to
their counterparts in Theorem 3.5 as φ ↑ ∞. As in Corollary 3.3, we obtain the equilibrium
cost in terms of two additional constants Ψ and Ξ whose form is reported in Table 1.

Corollary 3.6. The equilibrium cost for the traders can be written as

JA′(X∗,i;X∗,−i) =

∫ T

0

It−dX
∗,i
t +

ε

2

∫ T

0

(Ẋ∗,i
t )2dt, i = 1, . . . , N,

in terms of the equilibrium impact cost∫ T

0

It−dX
∗,i
t = λN

[
h1
Ψ2
x2 +

h2
ΞΨ

(xi − x)x

]
,

and equilibrium instantaneous cost

ε

2

∫ T

0

(Ẋ∗,i
t )2dt = ε

[
h3
2Ψ2

x2 +
h4
2Ξ2

(xi − x)2 +
h5
ΞΨ

x(xi − x)

]
.

Moreover, this is the limit of the cost in Corollary 3.3 as φ ↑ ∞.

Figure 1 illustrates the convergence of the equilibrium strategies and costs.
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4 Equilibria with Block Costs
This section describes the equilibria for the cost CB(·) in (2.5), which has no instantaneous
cost on the trading rate but has additional costs on block orders. We shall see that an
equilibrium exists only for very particular parameter values. The deeper meaning of this
seemingly peculiar cost structure will be addressed in Section 5.

As in Section 3 we first restrict our search for an equilibrium to the class of deterministic
strategies. However, since strategies with jumps and singular continuous components are
no longer ruled out by the cost, we have a much larger space to search over. The following
preliminary step narrows down the type of jumps that can arise in equilibrium. First, block
trades do not occur on (0, T ). Second, if the additional costs ϑ0, ϑT are positive, the block
trades at t = 0 and t = T are determined by the block trades of the other players.

Proposition 4.1. If X∗ is a Nash equilibrium then X∗ has no interior jumps,

∆X∗,i
t = 0, i = 1, . . . , N, ∀t ∈ (0, T ),

and its initial and terminal jumps satisfy

ϑ0∆X
∗,i
0 =

λ

2

∑
j ̸=i

∆X∗,j
0 , ϑT∆X

∗,i
T = −λ

2

∑
j ̸=i

∆X∗,j
T , i = 1, . . . , N.

In particular, ϑ0 = 0 implies ∆X∗,i
0 = 0 for all i, and ϑT = 0 implies ∆X∗,i

T = 0 for all i.

The proof in Appendix E uses necessary conditions for optimality that arise from per-
turbing a reference strategy by a round trip jump trade. A somewhat technical manipulation
of these conditions leads to a relationship between the jumps that must hold when a repre-
sentative trader acts optimally.

In view of Proposition 4.1, we would like to limit our search to strategies that only jump
at the beginning and end of the trading period. In addition, we want to restrict ourselves to
absolutely continuous trading on (0, T ). The next lemma justifies this reduction.

Lemma 4.2. A Nash equilibrium for JB in the class of deterministic admissible strategies
that are absolutely continuous on (0, T ) is a Nash equilibrium (in the class of admissible
strategies).

The proof in Appendix E proceeds through an approximation argument using Bernstein
polynomials. While the proof is fairly technical, the basic idea is that if an agent is in-
centivized to deviate using a general strategy Z, deviating to a smoothed version of Z still
reduces the execution cost.

We now lean on Proposition 4.1 and Lemma 4.2 to set up our deterministic problem.
To control the trading speed on (0, T ), we continue to work with functions vi ∈ L2[0, T ].
We also parametrize the initial and terminal jumps using constants, ∆X i

0 =: ai ∈ R and
∆X i

T =: bi ∈ R. If we let θa := ϑ0 and θb := ϑT it is not hard to verify via (2.7) that the
objective for a representative trader i can be recast as minimizing

JB(a
i, vi;v−i) =

1

2
I0a

i +

∫ T

0

Itv
i
t dt+

1

2
(IT− + IT )b

i +
θa
2
(ai)2 +

θb
2
(bi)2,
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where the impact process I is given by

It =

{
λe−βt

∑N
j=1 a

j +
∫ t

0
λe−β(t−s)

∑N
j=1 v

j
sds, t ∈ [0, T ),

IT− + λ
∑N

j=1 b
j, t = T

for I0− = 0, and the inventories satisfy

X i
t =

{
xi + ai +

∫ t

0
visds, t ∈ [0, T ),

0, t = T,

for X i
0− = xi. In particular, this implies that bi = −X i

T−. In view of the liquidation
constraint, bi is entirely determined by the initial jump ai and the trading speed vi, hence
our minimization is over R×L2[0, T ]. This retains a Hilbert space structure so, as in Section 3,
we can apply variational arguments to solve the game. The following lemma shows that the
deterministic equilibrium (if it exists) is similarly characterized by a 2N + 1 dimensional
system of linear homogeneous ordinary differential equations. However, this time the ODE
is written in terms of X (rather than v) and the imposition of block costs leads to additional
free boundary conditions that must also be pinned down as part of the solution.

Lemma 4.3. The strategy profile X defines a Nash equilibrium for JB if and only if it
forms, along with I and auxiliary processes Y 1, . . . , Y N , a solution5 to the ODE system

İt =
β

N − 1

[
It −

N∑
j=1

Y j
t

]
,

Ẏ i
t = − β

N − 1

[
It −

N∑
j=1

Y j
t

]
, i = 1, . . . , N,

Ẋ i
t =

β

λ(N − 1)

[
It + (N − 1)Y i

t −
N∑
j=1

Y j
t

]
, i = 1, . . . , N,

subject to the initial and terminal conditions

I0 = λ

N∑
i=1

ai, X i
0 = xi + ai, Y i

T = λbi, i = 1, . . . , N,

where

θaa
i =

λ

2

∑
j ̸=i

aj, θbb
i = −λ

2

∑
j ̸=i

bj, and bi = −X i
T−, i = 1, . . . , N.

It turns out that the existence of an equilibrium depends crucially on the choice of initial
and terminal block costs θa = ϑ0 and θb = ϑT . As the next theorem shows, there is a single
choice yielding existence for general initial inventories. Moreover, that choice consists of
different values for the initial and terminal costs, except in the case N = 2 of two traders.

5More precisely (since X and I may have jumps at 0 and T ), X and I satisfy the ODE on [0, T ).
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Theorem 4.4.

(1) If ϑ0 =
λ(N−1)

2
and ϑT = λ

2
then a Nash equilibrium for JB exists.

(2) If ϑ0 ̸= λ(N−1)
2

then a Nash equilibrium for JB exists if and only if x = 0.

(3) If ϑT ̸= λ
2

then a Nash equilibrium for JB exists if and only if xi = xj for all i, j ∈
{1, . . . , N}.

When a Nash equilibrium exists, it is uniquely defined through the strategy profile X∗ =
(X∗,1, . . . , X∗,N) given by

X∗,i
t = ft(x

i − x) + gtx, t ∈ [0, T ], i = 1, . . . , N,

where
ft = 1− βt

βT + 1
, t ∈ [0, T ), f0− = 1 and fT = 0,

gt = 1− N(βt+ 1)(N + 1)eβ
N+1
N−1

T + 2Neβ
N+1
N−1

t − (N − 1)

N((βT + 1)(N + 1) + 2)eβ
N+1
N−1

T − (N − 1)
, t ∈ [0, T ] and g0− = 1.

We observe that the equilibrium has a much simpler expression compared to the one for
instantaneous cost in the preceding section.

Remark 4.5. If ϑ0 ̸= λ(N−1)
2

and ϑT ̸= λ
2
, then (2) and (3) together imply that an equilibrium

exists if and only if xi = 0 for all i = 1, . . . , N . In that case, substituting in xi = 0 for all i
shows X∗,i ≡ 0. In words, the only possible equilibrium is that all agents have zero inventory
and do not trade. More generally, when ϑ0 ̸= λ(N−1)

2
or ϑT ̸= λ

2
, the equilibrium exists only

for initial inventories such that no block trade occurs at t = 0 or t = T , respectively, and in
that sense the value of ϑt does not matter.

The proof of Theorem 4.4 in Appendix E has two parts. The first is based on the ODE
system from Lemma 4.3, providing the explicit solution for the “good” parameter values
and proving that there is no solution for the “bad” parameter values. On the strength
of Lemma 4.2, the former establishes existence and uniqueness of the equilibrium also for
general admissible strategies, for those parameter values. Whereas for the bad parameter
values, verifying that the non-existence of a deterministic equilibrium extends to the full
class of admissible strategies is a major technical hurdle. Achieving this occupies a sizable
part of the proof, which combines original arguments with ideas of [31, Theorem 4.5(b)].

The final result of this section provides the equilibrium cost in closed form.

Corollary 4.6. When a Nash equilibrium for JB exists, the cost for the traders is

JB(X
∗,i;X∗,−i) =

∫ T

0

It−dX
∗,i
t +

1

2

(
∆I0∆X

∗,i
0 +∆IT∆X

∗,i
T

)
+

1

2

(
ϑ0(∆X

∗,i
0 )2 + ϑT (∆X

∗,i
T )2

)
, i = 1, . . . , N,
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in terms of the equilibrium impact cost∫ T

0

It−dX
∗,i
t +

1

2

(
∆I0∆X

∗,i
0 +∆IT∆X

∗,i
T

)
=

λN

βT + 1
x(xi − x)

+
λN3(N + 1)

(((
βT + 1

2

)
(N + 1) + 3

)
e

2(N+1)βT
N−1 − 2(N−1)

N2

(
Ne

(N+1)βT
N−1 + 1

4

))
(
N ((βT + 1) (N + 1) + 2) e

(N+1)βT
N−1 − (N − 1)

)2 x2,

and equilibrium block trade cost

1

2

(
ϑ0(∆X

∗,i
0 )2 + ϑT (∆X

∗,i
T )2

)
=

ϑ0(N + 1)2(1 +Neβ
N+1
N−1

T )2x2

2
(
N((βT + 1)(N + 1) + 2)eβ

N+1
N−1

T − (N − 1)
)2 +

ϑT (x
i − x)2

2(βT + 1)2
.

5 Identifying the Limit of Small Instantaneous Cost
This section connects the equilibrium with instantaneous cost (Theorem 3.5) and the equi-
librium with block cost (Theorem 4.4). Namely, we show that the latter is the limit of the
former for vanishing instantaneous cost ε → 0. The equilibrium with instantaneous cost is
canonical in that it does not require a particular choice of parameters. The limit of vanishing
instantaneous cost then gives rise to the seemingly unprincipled pair of “good” block cost pa-
rameters in a natural way. Indeed, our result implies that any different choice of parameters
would lead to a discontinuity in the equilibrium cost.

Theorem 5.1. As ε ↓ 0 the equilibrium X∗ = X∗,ε in Theorem 3.5 converges uniformly
on compact subsets of (0, T ) to the equilibrium X∗ = X∗,0 Theorem 4.4. Furthermore, the
equilibrium cost in Corollary 3.6 converges to that of Corollary 4.6 when ϑ0 = λ(N−1)

2
and

ϑT = λ
2
. In particular, for any δ ∈ (0, T ),

ε

∫ δ

0

(Ẋ∗,ε,i
t )2dt→ ϑ0(∆X

∗,0,i
0 )2 and ε

∫ T

δ

(Ẋ∗,ε,i
t )2dt→ ϑT (∆X

∗,0,i
T )2.

Remark 5.2. We can observe that in addition to the locally uniform convergence on (0, T ),
the strategies converge at T but not at 0. This is merely due to the convention for the
jump; the right continuous modification of the limiting strategy coincides with the strategy
in Theorem 4.4 everywhere on [0, T ].

Figure 2 illustrates the convergence of the equilibrium strategies and their costs. Theo-
rem 5.1 not only justifies the particular block costs found in Section 4, but also shows that
optimal trading is more aggressive than in the single player case. The next remark quantifies
that observation.
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Figure 2: Convergence of the equilibrium in Theorem 3.5 to that of Theorem 4.4 as ε ↓ 0
when λ = 0.2, T = 1, and N = 3. The three colors represent the three agents and range from
light to dark as ε decreases (ε = 0.1, 0.03, 0.005, 0). The darkest colors correspond to the
block cost. (Left Panel) Equilibrium strategies X∗,i

t for β = 1. (Right Panel) Equilibrium
costs from Corollaries 3.6 and 4.6 as a function of β.

Remark 5.3. The limiting behavior of the instantaneous cost observed in Theorem 5.1
is qualitatively different from the single-player case. If we pose the same objectives when
N = 1, the optimal instantaneous cost becomes negligible as ε ↓ 0. More precisely, one can
show (e.g., based on the formula in [10, Theorem 1]) that

ε

2

∫ T

0

(Ẋ∗,i
t )2dt ∼ Cε1/2

for a constant C = C(λ, β, T ) > 0, which implies that∥Ẋ∗,i∥L2[0,T ] is of order ε−1/4. Whereas
in the game with N > 1, the instantaneous cost converges to the (non-zero) block cost by
Theorem 5.1, implying that ∥Ẋ∗,i∥L2[0,T ] is of order ε−1/2.

6 Costs of Anarchy and Predation
In this section we compare the equilibrium cost of Section 4 with the classic Obizhaeva–Wang
solution for a single trader in the absence of competition.

6.1 Cost of Anarchy

For N ≥ 2 traders we can define a notion of “population impact cost”, PICN(x), in the game
by aggregating the impact cost from Corollary 4.6 across traders. If we let x = Nx be the
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net inventory in the market and use the formula in Corollary 4.6, we get that the population
impact cost is

PICN(x) :=
λN2(N + 1)

(((
βT + 1

2

)
(N + 1) + 3

)
e

2(N+1)βT
N−1 − 2(N−1)

N2

(
Ne

(N+1)βT
N−1 + 1

4

))
(
N ((βT + 1) (N + 1) + 2) e

(N+1)βT
N−1 − (N − 1)

)2 x2.

This can be compared to the impact cost of liquidating the net inventory optimally using
the single-player solution that a central planner would employ, PIC1(x) := λx2(βT + 2)−1.

We define the (relative, excess) system cost of anarchy, CoAN , as the percent increase in
the population impact cost of liquidating the net inventory,

CoAN :=

[
PICN(x)

PIC1(x)
− 1

]
· 100%, x ̸= 0. (6.1)

Note that, from the form of the population impact, CoAN does not depend on the net
inventory, x, or liquidity parameter, λ. Keeping the trading horizon T fixed, it depends
only on the price impact decay per unit time, β, and the dimension N . We visualize this
dependence in Figure 3. We note that when the net inventory in the market is 0, the net
impact cost in the game coincides with the cost when N = 1, PICN(0) = PIC1(0) = 0, and
there is no cost of anarchy.

Figure 3: Cost of Anarchy CoAN of (6.1), illustrated as function of β > 0 for various
population sizes N when T = 1. This is the percent increase (over the N = 1 case) in
impact cost incurred by the population to liquidate their inventory. Both panels show the
same function; the right panel shows a larger range of β to highlight the limit β → ∞.

We can describe the behavior of the cost of anarchy at the extremes of system size and
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impact decay. The cost of anarchy increases as N increases, but has a finite limit,

lim
N↑∞

CoAN =
βT

2(βT + 1)2
.

Interestingly, as illustrated in Figure 3, the cost of anarchy is maximized at an intermediate
value of β. For large N this maximum occurs near β ≈ 1

T
and amounts to roughly 12.5%.

A partial explanation is provided by the limits,

lim
β↓0

CoAN = lim
β↑∞

CoAN = 0.

For β → 0, there is essentially no resilience and the transient impact behaves like permanent
impact. Hence, all liquidation strategies have the same cumulative (across agents) impact
cost and the cost of anarchy tends to zero. For β → ∞, the behavior is akin to temporary
price impact with no block costs. Agents unwind their inventory at a constant rate in
equilibrium, and that is also the central planner’s limiting strategy. The impact costs tend
to zero in either case, limβ↑∞ PICN(x) = limβ↑∞ PIC1(x) = 0. They do so at the same rate,
resulting in limβ↑∞ CoAN = 0.

6.2 Cost of Predation

Suppose now that there is a single “liquidator” in the market that must unwind some non-
zero inventory x. We investigate what happens when N − 1 “predators”—i.e., agents with
zero initial inventory—are introduced to the system (cf. [29, 34]). In this case, the mean
inventory becomes x = x/N and we can compare the impact cost in the absence of other
traders with the cost faced in an equilibrium with predators. We find the liquidator’s impact
cost, LICN(x) for N ≥ 2 by substituting xi = x and x = x/N into the impact cost of
Corollary 4.6,

LICN(x) := λ

[
N(N − 1)

N2(βT + 1)

+
N(N + 1)

(((
βT + 1

2

)
(N + 1) + 3

)
e

2(N+1)βT
N−1 − 2(N−1)

N2

(
Ne

(N+1)βT
N−1 + 1

4

))
(
N ((βT + 1) (N + 1) + 2) e

(N+1)βT
N−1 − (N − 1)

)2
]
x2.

When N = 1 the liquidator’s impact cost and the population impact cost coincide,
LIC1(x) = λx2(βT +2)−1 = PIC1(x). We define the (relative, excess) cost of predation, CoPN

as the percent increase in the liquidator’s impact cost due to the presence of N−1 predators,

CoPN :=

[
LICN(x)

LIC1(x)
− 1

]
· 100%. (6.2)

Once again, this cost depends only on β and N . We illustrate the dependence on these
parameters in Figure 4 where we see that the cost is increasing in N and decreasing in β.
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Figure 4: Cost of Predation CoPN of (6.2) when T = 1. This is the percent increase (over
the N = 1 case) in impact cost for the liquidator when there are N − 1 predators in the
market. (Left Panel) Illustration as function of β > 0 for various population sizes N . (Right
Panel) Illustration as a function of N for several values of β.

By rearranging, we can decompose the cost of predation into two parts,

CoPN =

[
(N − 1)(βT + 2)

N(βT + 1)
− N − 1

N

]
· 100% +

1

N
CoAN . (6.3)

Using this expression, we see that the limiting behavior is

lim
N↑∞

CoPN = (1 + βT )−1 · 100%, while lim
β↑∞

CoPN = 0 and lim
β↓0

CoPN =
N − 1

N
.

From (6.3) we also see immediately that CoPN > 0 for all N ≥ 2; that is, the presence of
predators is costly. While this seems natural, it should be contrasted with the result in [32,
Corollary 3.3]. There, using the Almgren–Chriss model with temporary and permanent (but
no transient) impact, the “predator” indeed acts as a predator when the permanent impact
parameter is large enough, but acts as a liquidity provider when the permanent impact
parameter is small relative to the temporary impact parameter.

7 Conclusion
We have derived the equilibria for N -player games with transient price impact, with and
without regularization by an instantaneous cost on the trading rate. The equilibria are
obtained in closed form. For the unregularized case, we have shown that an equilibrium
exists only when a particular, time-dependent block cost is added. The equilibrium block
cost is explained as the limit of the equilibrium instantaneous costs when their parameter
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ε → 0. The limiting model is particularly tractable and we have given simple expressions
for the impact costs of anarchy and predation.

Our results give rise to several follow-up questions. First, one can ask if the aforemen-
tioned observations are specific to exponential kernels. We hope to show that similar results
hold for a broad class of regular decay kernels, whereas singular kernels have a different
behavior. Second, the limit N → ∞ gives rise to mean field games (e.g., [5]). It turns out
that the two limits N → ∞ and ε → 0 do not commute, and we will relate the various
limits in future research. Third, the present game uses the full information setup, like the
vast majority of the literature. One can ask what happens, for instance, if agents do not
know their competitors’ initial inventories. Results in that direction are scarce; see [25] for
a model where all impact is permanent and [8, 9] for a mean field model.

Appendix

A Notational Remarks
Integration. We write

∫ b

a
fdµ to denote the integral

∫
[a,b]

fdµ of a function f against a
measure µ on [a, b] ⊂ R, including any atoms µ may have at a or b. When the left or right
endpoint is not included, we write

∫ b

a+
fdµ :=

∫
(a,b]

fdµ or
∫ b−
a
fdµ :=

∫
[a,b)

fdµ, respectively.

Spaces. As usual, L2[0, T ] is the Hilbert space of (equivalence classes of) square integrable
functions on [0, T ] with inner product

⟨v, w⟩L2 =

∫ T

0

vtwtdt.

Similarly, H1[0, T ] is the Sobolev space of functions v ∈ L2[0, T ] that admit weak derivatives
v̇ ∈ L2[0, T ]. It is a Hilbert space with inner product

⟨v, w⟩H1 = ⟨v, w⟩L2 + ⟨v̇, ẇ⟩L2 .

If H is any Hilbert space we write H×N to denote its N -fold Cartesian product.

B Reminder on Gateaux Derivative and Γ-Convergence
For ease of reference, this section collects some standard definitions and results to be used in
the proofs below. Let H be a real separable Hilbert space with inner product ⟨·, ·⟩H. For a
real-valued function F on H we define the Gateaux differential of F at h ∈ H in the direction
η ∈ H by

δηF (h) = lim
ϵ↓0

F (h+ ϵη)− F (h)

ϵ

when the limit exists. If the Gateaux differential exists for all directions η ∈ H we say that F
is Gateaux differentiable at h and call δ·F (h) the Gateaux derivative of F at h. If, further,
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the mapping η 7→ δηF (h) is a continuous linear operator on H, then by Riesz’ representation
theorem we can identify the derivative with an element DF (h) ∈ H,

δηF (h) = ⟨DF (h), η⟩H, ∀η ∈ H.

The following result is standard (see, e.g., [30, Theorem 3.24]).

Proposition B.1. If F : H 7→ R∪{∞} is a proper6 convex function with Gateaux derivative
at every h ∈ H then h∗ is a minimizer of F if and only if δηF (h∗) = 0 for all η ∈ H.

In particular, if F is a proper convex function with a continuous linear Gateaux derivative
at every h ∈ H, then h∗ is a minimizer of F if and only if DF (h∗) = 0. We will use this fact
frequently.

Another notion used below is Γ-convergence, for which [11] is a standard reference.

Definition B.2. We say that a sequence Fn : H → R ∪ {∞}, n ≥ 0, Γ-converges to a
function F : H → R ∪ {∞} (and write Fn

Γ−→ F ) if:

(i) For all h ∈ H and all sequences (hn)n≥0 with hn → h,

F (h) ≤ lim inf
n→∞

Fn(hn).

(ii) For all h ∈ H there exists a sequence (hn)n≥0 with hn → h and

F (h) ≥ lim sup
n→∞

Fn(hn).

The following result (see, e.g., [11, Proposition 7.18]) connects this type of convergence
to the consistency of minimizers.

Theorem B.3 (Fundamental Theorem of Γ-Convergence7). Suppose that Fn
Γ−→ F and

h∗n ∈ argminh∈H Fn(h), n ≥ 0. Then every limit point of (h∗n)n≥0 is a minimizer of F .
Moreover, if (h∗n)n≥0 converges, so do the minimum values,

lim
n→∞

inf
h∈H

Fn(h) = inf
h∈H

F (h).

C Proofs for Section 2

C.1 Proposition 2.2

We can expand (2.6) to get

J·(X
i;X−i) = E

[ ∫ T

0

Pt−dX
i
t +

1

2

∑
t∈[0,T ]

∆Pt∆X
i
t +

∫ T

0

It−dX
i
t +

1

2

∑
t∈[0,T ]

∆It∆X
i
t

+ (X i
0−P0− −X i

TPT ) + C·(X
i)

]
.

6We say that F : H → R ∪ {∞} is proper if {h ∈ H : F (h) < ∞} ≠ ∅.
7Other common variants of this theorem include an equicoercivity assumption on (Fn)n≥0 to imply the

convergence of the minimum values.
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Using integration by parts,∫ T

0

Pt−dX
i
t = PTX

i
T − P0−X

i
0− −

∫ T

0

X i
t−dPt − [X i, P ]T

and thus

J·(X
i;X−i) = E

[
−
∫ T

0

X i
t−dPt − [X i, P ]T +

1

2

∑
t∈[0,T ]

∆Pt∆X
i
t

+

∫ T

0

It−dX
i
t +

1

2

∑
t∈[0,T ]

∆It∆X
i
t + C·(X

i)

]
.

The theory of stochastic processes (see [21, Proposition I.3.14]) gives that
∫ t

0
X i

s−dPs and
[X i, P ]t are local martingales. Using our assumption that the total variation of X i is P-a.s.
bounded, we conclude that X i is bounded and

E
[∫ T

0

X i
t−dPt

]
= E

[
[X i, P ]T

]
= 0.

Moreover,
1

2

∑
t∈[0,T ]

∆X i
t∆Pt =

1

2
[X i, P ]T ,

so its expected value is also 0. Since these arguments hold for arbitrary admissible X i, we
obtain the expression in (2.7) of Proposition 2.2. To obtain the remaining representation in
(2.8), we insert the form of I into (2.7) to get

J·(X
i;X−i) = E

[
C·(X

i) + λ

∫ T

0

∫ t−

0

e−β(t−s)

N∑
j=1

dXj
sdX

i
t +

λ

2

N∑
j=1

∑
t∈[0,T ]

∆Xj
t∆X

i
t

]
. (C.1)

Observe that by splitting and interchanging the order of integration, we can write∫ T

0

∫ t−

0

e−β(t−s)dX i
sdX

i
t

=
1

2

∫ T

0

∫ t−

0

e−β(t−s)dX i
sdX

i
t +

1

2

∫ T

0

∫ t−

0

e−β(t−s)dX i
sdX

i
t

=
1

2

∫ T

0

∫ t−

0

e−β(t−s)dX i
sdX

i
t +

1

2

∫ T

0

∫ T

s

e−β(t−s)dX i
tdX

i
s −

1

2

∑
s∈[0,T ]

(∆X i
s)

2

=
1

2

∫ T

0

∫ T

0

e−β|t−s|dX i
sdX

i
t −

1

2

∑
t∈[0,T ]

(∆X i
t)

2.

Substituting this expression into (C.1) completes the proof.
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C.2 Proposition 2.4

Suppose there are two distinct equilibria X0 and X1. Define

Xα = αX1 + (1− α)X0, α ∈ (0, 1),

and

V (α) =
N∑
i=1

(
J(Xα,i;X0,−i) + J(X1−α,i;X1,−i)

)
.

A consequence of Lemma 2.5 is that V is strictly convex. Moreover, by the Nash equilibrium
definition,

V (α) ≥
N∑
i=1

(
J(X0,i;X0,−i) + J(X1,i;X1,−i)

)
,

and this lower bound is attained by setting α = 0. Next, we will differentiate V at 0 to
obtain the contradiction V̇ (0) < 0.

To facilitate this we deal with each term in the expression for J· separately. Let

Ji
1(α) =

λ

2

∫ T

0

∫ T

0

e−β|t−s|dXα,i
s dXα,i

t +
λ

2

∫ T

0

∫ T

0

e−β|t−s|dX1−α,i
s dX1−α,i

t .

By differentiating and setting α = 0 we find

J̇i
1(0) = −λ

∫ T

0

∫ T

0

e−β|t−s|d(X1,i
s −X0,i

s )d(X1,i
t −X0,i

t ).

Summing over i,

N∑
i=1

J̇i
1(0) = −λ

N∑
i=1

∫ T

0

∫ T

0

e−β|t−s|d(X1,i
s −X0,i

s )d(X1,i
t −X0,i

t ). (C.2)

Next, let

Ji
2(α) = λ

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX0,j
s dXα,i

t + λ

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX1,j
s dX1−α,i

t .

Differentiating,

J̇i
2(α) = λ

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX0,j
s d(X1,i −X0,i)

− λ

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX1,j
s d(X1,i −X0,i)

= −λ
∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

d(X1,j
s −X0,j

s )d(X1,i
t −X0,i

t ),
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which is constant in α. If we sum over i and manipulate the terms,

N∑
i=1

J̇i
2(0) = −λ

N∑
i=1

∑
j ̸=i

∫ T

0

∫ t−

0

e−β(t−s)d(X1,j
s −X0,j

s )d(X1,i
t −X0,i

t )

= −λ
2

N∑
i=1

∑
j ̸=i

∫ T

0

∫ t−

0

e−β(t−s)d(X1,j
s −X0,j

s )d(X1,i
t −X0,i

t )

− λ

2

N∑
i=1

∑
j ̸=i

∫ T

0

∫ T

s+

e−β(t−s)d(X1,i
t −X0,i

t )d(X1,j
s −X0,j

s )

= −λ
2

N∑
i=1

∑
j ̸=i

∫ T

0

∫ T

0

e−β|t−s|d(X1,j
s −X0,j

s )d(X1,i
t −X0,i

t )

+
λ

2

N∑
i=1

∑
j ̸=i

∑
t∈[0,T ]

∆(X1,j
t −X0,j

t )∆(X1,i
t −X0,i

t ).

Due to the positive definiteness of the kernel e−β|t−s| (in the sense of Bochner) we have

−
∑
i

∑
j ̸=i

∫ T

0

∫ T

0

e−β|t−s|dM j
sdM

i
t ≤

∑
i

∫ T

0

∫ T

0

e−β|t−s|dM i
sdM

i
t

for arbitrary Lebesgue–Stieltjes integrators M i. Applying this,

N∑
i=1

J̇i
2(0) ≤

λ

2

N∑
i=1

∫ T

0

∫ T

0

e−β|t−s|d(X1,i
s −X0,i

s )d(X1,i
t −X0,i

t ) (C.3)

+
λ

2

N∑
i=1

∑
j ̸=i

∑
t∈[0,T ]

∆(X1,j
t −X0,j

t )∆(X1,i
t −X0,i

t ).

Next, we treat the jumps. Let

Ji
3(α) =

λ

2

∑
j ̸=i

∑
t∈[0,T ]

∆Xα,i
t ∆X0,j

t +
λ

2

∑
j ̸=i

∑
t∈[0,T ]

∆X1−α,i
t ∆X1,j

t .

Differentiating gives

J̇i
3(α) = −λ

2

∑
j ̸=i

∑
t∈[0,T ]

∆
(
X0,i

t −X1,i
t

)
∆X0,j

t +
λ

2

∑
j ̸=i

∑
t∈[0,T ]

∆
(
X0,i

t −X1,i
t

)
∆X1,j

t .

Then, by collecting terms and summing over i,

N∑
i=1

J̇i
3(0) = −λ

2

N∑
i=1

∑
j ̸=i

∑
t∈[0,T ]

∆
(
X1,i

t −X0,i
t

)
∆
(
X1,j

t −X0,j
t

)
. (C.4)
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It remains is to treat the terms arising from the cost C·. Since X0 and X1 are assumed to
be Nash equilibria they (and their convex combinations) must have a finite cost (as measured
by C·) almost surely. Therefore, we may ignore the characteristic function terms. We only
consider the case of CB(·) as the proof with CA(·) or CA′(·) is similar. Let

Ji
4(α) = CB(X

α,i) + CB(X
1−α,i) =

∑
t∈[0,T ]

ϑt

2
(∆Xα,i

t )2 +
∑

t∈[0,T ]

ϑt

2
(∆X1−α,i

t )2.

Differentiating and setting α = 0,

J̇i
4(0) =

∑
t∈[0,T ]

ϑt

(
∆X0,i

t (∆X1,i
t −∆X0,i

t )−∆X1,i
t (∆X1,i

t −∆X0,i
t )
)

= −
∑

t∈[0,T ]

ϑt(∆X
1,i
t −∆X0,i

t )2.

Summing over i, we have
N∑
i=1

J̇i
4(0) = −

N∑
i=1

∑
t∈[0,T ]

ϑt(∆X
1,i
t −∆X0,i

t )2 ≤ 0. (C.5)

Aggregating the above expressions we recover V (α),

V (α) = E

[
N∑
i=1

(Ji
1(α) + Ji

2(α) + Ji
3(α) + Ji

4(α))

]
.

By an application of the dominated convergence theorem (or a direct verification) we may
pass the derivative under the expectation to obtain

V̇ (0) = E

[
N∑
i=1

(J̇i
1(0) + J̇i

2(0) + J̇i
3(0) + J̇i

4(0))

]

≤ −E

[
λ

2

N∑
i=1

∫ T

0

∫ T

0

e−β|t−s|d(X1,i
s −X0,i

s )d(X1,i
t −X0,i

t )

]
.

The last inequality follows from (C.2), (C.3), (C.4), and (C.5). Finally, since X0 ̸= X1 and
the kernel e−β|t−s| is positive definite, we conclude V̇ (0) < 0. This contradiction completes
the proof.

D Proofs for Section 3

D.1 Equilibrium with Terminal Inventory Penalty

D.1.1 Lemma 3.1

Taking the Gateaux differential of JA(·,v−i) in (3.2) in an arbitrary direction η ∈ L2[0, T ],

δηJA(v
i;v−i) =

∫ T

0

(δηItv
i
t + ηtIt + εvitηt)dt+ φX i

T

∫ T

0

ηtdt,
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where

δηIt =

∫ t

0

e−β(t−s)ληsds, t ∈ [0, T ].

By changing the order of integration,∫ T

0

δηItv
i
tdt =

∫ T

0

∫ t

0

λe−β(t−s)vitηsdsdt =

∫ T

0

∫ T

s

λe−β(t−s)vitηsdtds.

Swapping the roles of the integration variables s and t, we get the expression∫ T

0

δηItv
i
tdt =

∫ T

0

∫ T

t

λe−β(s−t)visdsηtdt,

which leads to the representation

δηJA(v
i;v−i) =

∫ T

0

[Y i
t + It + εvit + φX i

T ]ηtdt

for

Y i
t :=

∫ T

t

λe−β(s−t)visds, t ∈ [0, T ].

From this, we see that η 7→ δηJA(v
i;v−i) is a well-defined continuous linear operator on

L2[0, T ] for every vi ∈ L2[0, T ]. Letting

DJA(v
i;v−i) =

(
Y i
t + It + εvit + φX i

T

)
∈ L2[0, T ]

we have the following form of the derivative in terms of the usual L2[0, T ] inner product,

δηJA(v
i;v−i) = ⟨DJA(v

i;v−i), η⟩L2[0,T ].

By standard optimality theory in Hilbert spaces (see Appendix B), an element vi ∈ L2[0, T ]
is a minimizer of JA(·,v−i) if and only if

DJA(v
i;v−i) = 0,

where the equality is to be understood in the L2 sense. Equivalently, the representative
DJA(v

i;v−i) of the Gateaux derivative must be 0 almost everywhere; that is,

Y i
t + It + εvit = −φX i

T , a.e. t ∈ [0, T ]. (D.1)

Since Y i and I are continuous by definition, we have that any vi satisfying (D.1) is equal
almost everywhere to a continuous function. From here on, we identify any such vi ∈ L2[0, T ]
with its continuous version. Then, by observing that Y i and I are differentiable (and that
X i

T is a constant), we have that any vi satisfying (D.1) is also differentiable. The condition
(D.1) then implies that

Ẏ i
t + İt + εv̇it = 0, t ∈ [0, T ]. (D.2)
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To form a Nash equilibrium we require the simultaneous optimality of each of the controls
in the strategy profile v. As a result, (D.1) and (D.2) must hold for all i = 1, . . . , N . In this
way, we arrive at the following equilibrium system of ODEs,

0 = Ẏ i
t + İt + εv̇it, i = 1, . . . , N,

Ẏ i
t = βY i

t − λvit, i = 1, . . . , N,

İt = −βIt + λ

N∑
i=1

vit,

subject to the initial and terminal conditions

I0 = 0,

Y i
T = 0, i = 1, . . . , N,

viT = −ε−1
[
φX i

T + IT
]
, i = 1, . . . , N,

where the last equation arises by taking t ↑ T in (D.1).
It is easy to check that the satisfaction of this system implies (D.1) for all i = 1, . . . , N .

Hence, enforcing the ODEs or the concurrent satisfaction of (D.1) for all i = 1, . . . , N is
equivalent. To complete the proof, we rearrange the system of ODEs to recover the standard
form reported in Lemma 3.1.

D.1.2 Theorem 3.2

Let F = (I, Y 1, . . . , Y N , v1, . . . , vN)⊤. The system in Lemma 3.1 can be written in matrix
form,

Ḟt = AFt (D.3)

for

A =



−β 0 0 . . . 0 0 λ λ . . . λ λ
0 β 0 . . . 0 0 −λ 0 . . . 0 0
0 0 β . . . 0 0 0 −λ . . . 0 0
...

...
... . . . ...

...
...

... . . . ...
...

0 0 0 . . . β 0 0 0 . . . −λ 0
0 0 0 . . . 0 β 0 0 . . . 0 −λ
β
ε

−β
ε

0 . . . 0 0 0 −λ
ε

. . . −λ
ε

−λ
ε

β
ε

0 −β
ε

. . . 0 0 −λ
ε

0 . . . −λ
ε

−λ
ε...

...
... . . . ...

...
...

... . . . ...
...

β
ε

0 0 . . . −β
ε

0 −λ
ε

−λ
ε

. . . 0 −λ
ε

β
ε

0 0 . . . 0 −β
ε

−λ
ε

−λ
ε

. . . −λ
ε

0



.

It can be directly verified that the matrix A has eigenvalues

z1 =
−λ(N − 1) +

√
(N − 1)2λ2 + 4βε(N + 1)λ+ 4β2ε2

2ε
,

z2 =
−λ(N − 1)−

√
(N − 1)2λ2 + 4βε(N + 1)λ+ 4β2ε2

2ε
,
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z2+i = β + ε−1λ, i = 1, . . . , N − 1,

and zN+1+i = 0 for i = 1, . . . , N , with associated eigenvectors

q1 =
Nλ

z1 + β
e1 −

N∑
j=1

λ

z1 − β
e1+j +

N∑
j=1

eN+1+j,

q2 =
Nλ

z2 + β
e1 −

N∑
j=1

λ

z2 − β
e1+j +

N∑
j=1

eN+1+j,

q2+i = εe2 − εe2+i − eN+2 + eN+2+i, i = 1, . . . , N − 1,

qN+1+i =
λ

β
e1 +

λ

β
e1+i + eN+1+i, i = 1, . . . , N.

These eigenvalues and eigenvectors define the columns of the fundamental matrix

Qt =



Nλ
z1+β

ez1t Nλ
z2+β

ez2t 0 0 . . . 0 λ
β

λ
β

λ
β

. . . λ
β

− λ
z1−β

ez1t − λ
z2−β

ez2t εez3t εez3t . . . εez3t λ
β

0 0 . . . 0

− λ
z1−β

ez1t − λ
z2−β

ez2t −εez3t 0 . . . 0 0 λ
β

0 . . . 0

− λ
z1−β

ez1t − λ
z2−β

ez2t 0 −εez3t . . . 0 0 0 λ
β

. . . 0
...

...
...

... . . . ...
...

...
... . . . ...

− λ
z1−β

ez1t − λ
z2−β

ez2t 0 0 . . . −εez3t 0 0 0 . . . λ
β

ez1t ez2t −ez3t −ez3t . . . −ez3t 1 0 0 . . . 0
ez1t ez2t ez3t 0 . . . 0 0 1 0 . . . 0
ez1t ez2t 0 ez3t . . . 0 0 0 1 . . . 0
...

...
...

... . . . ...
...

...
... . . . ...

ez1t ez2t 0 0 . . . ez3t 0 0 0
. . . 1



.

Let c = (c1, . . . , c2N+1)
⊤ be a vector of constants. The fundamental solution to (D.3) takes

the form

Ft = Qtc = c1q1e
z1t + c2q2e

z2t +
N−1∑
i=1

c2+iq2+ie
z3t +

N∑
i=1

cN+1+iqN+1+i. (D.4)

To solve for c we enforce the boundary conditions from Lemma 3.1. To begin, we need an
expression for the inventory processes. By integrating the expressions for vi in (D.4) we have
that X1 is given by

X1
t = x1 +

c1
z1
(ez1t − 1) +

c2
z2
(ez2t − 1)− (ez3t − 1)

N∑
j=2

c1+j

z3
+ cN+2t, (D.5)

and

X i
t = xi +

c1
z1
(ez1t − 1) +

c2
z2
(ez2t − 1) +

c1+i

z3
(ez3t − 1) + cN+1+it, i = 2, . . . , N. (D.6)
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Then, writing the boundary conditions in terms of c we get the system of 2N +1 equations,

c1
Nλ
z1+β

+ c2
Nλ
z2+β

+ λ
β

∑N
j=1 cN+1+j = 0,

−c1 λ
z1−β

ez1T − c2
λ

z2−β
ez2T + εez3T

∑N
j=2 c1+j +

λ
β
cN+2 = 0,

−c1 λ
z1−β

ez1T − c2
λ

z2−β
ez2T − εez3T c1+i +

λ
β
cN+1+i = 0, i = 2, . . . , N,

c1e
z1T + c2e

z2T − ez3T
∑N

j=2 c1+j + cN+2

= −ε−1φ
(
x1 + c1

z1
(ez1T − 1) + c2

z2
(ez2T − 1)

)
+ε−1φ

(
(ez3T − 1)

∑N
j=2

c1+j

z3
− cN+2T

)
−ε−1

(
c1

Nλ
z1+β

ez1T + c2
Nλ
z2+β

ez2T + λ
β

∑N
j=1 cN+1+j

)
,

c1e
z1T + c2e

z2T + c1+ie
z3T + cN+1+i

= −ε−1φ
(
xi + c1

z1
(ez1T − 1) + c2

z2
(ez2T − 1)

)
−ε−1φ

(
c1+i

z3
(ez3T − 1) + cN+1+iT

)
−ε−1

(
c1

Nλ
z1+β

ez1T + c2
Nλ
z2+β

ez2T + λ
β

∑N
j=1 cN+1+j

)
, i = 2, . . . , N.

We will solve this system in parts. First, we reduce to a tractable three dimensional system.
Summing over the last N equations and rearranging yields

−ε−1φ
N∑
j=1

xj = Nc1

[
ez1T +

ε−1φ

z1
[ez1T − 1] + ε−1 Nλ

z1 + β
ez1T

]
+Nc2

[
ez2T +

ε−1φ

z2
[ez2T − 1] + ε−1 Nλ

z2 + β
ez2T

]
(D.7)

+

[
1 + ε−1φT +Nε−1λ

β

] N∑
j=1

cN+1+j.

At the same time, summing over the 2nd to (N + 1)th equations gives

0 = −c1
Nλ

z1 − β
ez1T − c2

Nλ

z2 − β
ez2T +

λ

β

N∑
i=1

cN+1+i. (D.8)

Coupling (D.7) and (D.8) with the first equation we can solve for c1, c2 and
∑N

i=1 cN+1+i.
Written in terms of the constants in Table 1, we get

c1 = − φ

εψ
x, c2 =

γ1φ

εγ2ψ
x,

N∑
i=1

cN+1+i = −Nβρ−φ
εψ

x. (D.9)
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We now pare off the 2nd and the (N + 2)th equations. After substituting in (D.9) and
rearranging we get (again in term of the constants in Table 1)

λ

β
cN+2 + εez3T

N∑
j=2

c1+j = −λρ−φ
εψ

x, (D.10)

−
[
ez3T +

φ

ε

ez3T − 1

z3

] N∑
j=2

c1+j+
[
1 +

φ

ε
T
]
cN+2 = −φ

ε
(x1 − x)− βρ−

[
1 +

φ

ε
T
] φ
εψ
x.

(D.11)

Solving (D.10) and (D.11) yields

cN+2 = −βφ
εξ

(x1 − x)− βρ−φ

εψ
x, (D.12)

N∑
j=2

c1+j =
λφ

ε2ξez3T
(x1 − x). (D.13)

At last, we turn to the 3rd to (N+1)th equations and the last N−1 equations. Substituting
in the existing solutions and collecting terms we arrive at the system

−εez3T c1+i +
λ

β
cN+1+i = −λφρ−

εψ
x, i = 2, . . . , N,

[
ez3T +

φ

ε

ez3T − 1

z3

]
c1+i +

[
1 +

φ

ε
T
]
cN+1+i

= −φ
ε
(xi − x)− βρ−

[
1 +

φ

ε
T
] φ
εψ
x, i = 2, . . . , N.

These equations can be solved in pairs. By doing so, one finds

cN+1+i = −βφ
εξ

(xi − x)− βρ−φ

εψ
x, i = 2, . . . , N, (D.14)

c1+i = − λφ

ε2ξez3T
(xi − x), i = 2, . . . , N. (D.15)

To complete the proof we substitute (D.9), (D.12), (D.13), (D.14), and (D.15) into (D.5)
and (D.6), and collect terms.

D.1.3 Corollary 3.3

Using the form of the equilibrium in Theorem 3.2, we compute the equilibrium impact

It = −Nλ
[
ρ− +

1

z1 + β
ez1t − γ1

γ2

1

z2 + β
ez2t
]
φ

εψ
x.
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By differentiating we similarly obtain

Ẋ∗,i
t = −

[
βρ− + ez1t − γ1

γ2
ez2t
]
φ

εψ
x−

[
β +

λez3t

εez3T

]
φ

εξ
(xi − x), i = 2, . . . , N.

Here we have used the constants ψ and ξ from Table 1. Defining

h1t :=

[
βρ− + ez1t − γ1

γ2
ez2t
] [
ρ− +

1

z1 + β
ez1t − γ1

γ2

1

z2 + β
ez2t
]
,

h2t :=

[
β +

λez3t

εez3T

] [
ρ− +

1

z1 + β
ez1t − γ1

γ2

1

z2 + β
ez2t
]
,

one can verify that

ItẊ
∗,i
t = h1t

Nλφ2

ε2ψ2
x2 + h2t

Nλφ2

ε2ξψ
(xi − x)x.

At the same time, defining

h3t :=

[
βρ− + ez1t − γ1

γ2
ez2t
]2
, h4t :=

[
β +

λez3t

εez3T

]2
,

h5t :=

[
βρ− + ez1t − γ1

γ2
ez2t
] [
β +

λez3t

εez3T

]
,

we have
(Ẋ∗,i

t )2 = h3t
φ2

ε2ψ2
x2 + h4t

φ2

ε2ξ2
(xi − x)2 + h5t

2φ2

ε2ξψ
x(xi − x).

By expanding the product form of the functions hit, i = 1, . . . , 5 and integrating over [0, T ]
we obtain the identities

hi =

∫ T

0

hitdt, i = 1, . . . , 5,

for the constants hi defined in Table 1. The form of the integrals∫ T

0

ItdX
∗,i
t =

∫ T

0

ItẊ
∗,i
t dt and

ε

2

∫ T

0

(Ẋ∗,i
t )2dt

in the statement of the corollary follows by substitution. Finally, an algebraic manipulation
allows us to write X∗,i

T in terms of the constant p of Table 1,

X∗,i
T =

z3
ξ
(xi − x) +

p

ψ
x.

The reported form of φ(X∗,i
T )2 is then immediate.
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D.2 Equilibrium with Liquidation Constraint

D.2.1 Lemma 3.4

To emphasize the dependence of the equilibria in Theorem 3.2 on φ we will write X∗(φ) and

Ẋ∗(φ) = v∗(φ). Under our assumptions there is X̃ ∈ H1[0, T ]×N such that X∗(φ)
H1×N

−−−→
φ→∞

X̃.

As a consequence, there is also ṽ ∈ L2[0, T ]×N such that ˙̃X = ṽ and v∗(φ)
L2×N

−−−→
φ→∞

ṽ. We

begin with a technical result about the Γ-convergence of the objective functions when indexed
by φ and v∗,−i(φ). See Appendix B for the definition of Γ-convergence.

Lemma D.1. We have JA(·;v∗,−i(φ))
Γ−−−→

φ→∞
JA′(·; ṽ−i) for i = 1, . . . , N .

Proof. We begin by considering I as a functional that takes L2[0, T ] to itself. That is, for
any v ∈ L2[0, T ] we write I[v;v∗,−i(φ)] to denote the function

t 7→ It[v;v
∗,−i(φ)] = λ

∫ t

0

e−β(t−s)

(
vt +

∑
j ̸=i

v∗,js (φ)

)
ds.

Standard estimates verify that I[v;v∗,−i(φ)] ∈ L2[0, T ]. We also consider X i
T as a functional

from L2[0, T ] to R,

v 7→ X i
T [v] = xi +

∫ T

0

vtdt.

With this, we can express the objectives JA and JA′ of (3.2) and (3.3) as

JA(v;v
∗,−i(φ)) =

〈
I[v;v∗,−i(φ)], v

〉
L2 +

ε

2
∥v∥L2 +

φ

2

(
X i

T [v]
)2
,

JA′(v; ṽ) = ⟨I[v; ṽ], v⟩L2 +
ε

2
∥v∥L2 + χ{Xi

T [v]̸=0}.

Next, fix a sequence of positive numbers (φn)n≥0 satisfying φn → ∞. Let v ∈ L2[0, T ] be
arbitrary and fix any convergent sequence (vn)n≥0 in L2[0, T ] with limit v. It is easy to verify
that I[vn;v∗,−i(φn)]

L2

−−−→
n→∞

I[v, ṽ−i]. Using this and the continuity of the inner product,

lim
n→∞

(〈
I[vn;v∗,−i(φn)], vn

〉
L2 +

ε

2
∥vn∥L2

)
= ⟨I[v; ṽ], v⟩L2 +

ε

2
∥v∥L2 . (D.16)

It is similarly straightforward to check that

φn

2

(
X i

T [v]
)2 Γ−−−→

n→∞
χ{Xi

T [v]̸=0} (D.17)

as a functional on L2[0, T ]. Combining the conclusions of (D.16) and (D.17) with [11,
Proposition 6.20] gives the Γ-convergence stated in the lemma.

As v∗,i(φ) minimizes JA(·;v∗,−i(φ)) and v∗,i(φ)
L2

−−−→
φ→∞

ṽi, Lemma D.1 and Theorem B.3

yield that ṽi minimizes JA′(·, ṽ−i) and the costs converge. As this holds for all i, ṽ is a
Nash equilibrium for JA′ . By reparametrizing in terms of the original process X̃, it follows
that X̃ is a Nash equilibrium for JA′ .
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D.2.2 Theorem 3.5

Passing to the limit in ft and gt from Theorem 3.2 gives the stated form of ft and gt. To see
that the equilibria converge in H1[0, T ] (so that we may apply Lemma 3.4), we first verify
that f and g converge uniformly to f and g on [0, T ]. Indeed, the functions take the form

ft = 1− Ftφ

εp+ φΨ
, gt = 1− Gtφ

εz3 + φΞ
, ft = 1− Ft

Ψ
, gt = 1− Gt

Ξ
,

for given continuous F and G, and constants z3, p,Ψ and Ξ that are all independent of φ. It
follows that

sup
t∈[0,T ]

|ft − ft| ≤ sup
t∈[0,T ]

|Ft|
∣∣∣∣ εp

εpΨ+ φΨ2

∣∣∣∣ , sup
t∈[0,T ]

|gt − gt| ≤ sup
t∈[0,T ]

|Gt|
∣∣∣∣ εz3
εz3Ξ + φΞ2

∣∣∣∣ .
This gives the requisite uniform convergence as φ ↑ ∞. In fact, by a similar argument it is not
hard to see that the derivatives to all orders of f and g also converge uniformly. Moreover,
these estimates ensure that, when parametrized by φ > 0, the equilibria (and their deriva-
tives) in Theorem 3.2 are uniformly bounded in the supremum norm8. Taken together, the
dominated convergence theorem implies the claimed convergence of the equilibrium strategy
profile.

D.2.3 Corollary 3.6

This result could be shown directly by substituting the equilibrium strategies in Theorem 3.5.
However, to simplify computations we leverage Lemma 3.4 and pass to the limit in the
expressions of Corollary 3.3. The constants p and hj, j = 1, . . . , 5 appearing in Corollary 3.3
are independent of φ (see Table 1). Consequently, we may focus on the behavior of ψ and ξ.
From Table 1 we see that φ−1ψ → ε−1Ψ and φ−1ξ → ε−1Ξ as φ ↑ ∞. With this, the
expression for the cost follows immediately.

E Proofs for Section 4

E.1 Proposition 4.1

We first show an auxiliary result related to the optimality of jumps; it follows the template
of [31, Proposition 4.11].

Lemma E.1. Fix a strategy profile X. If X i is optimal for JB(·,X−i) then for any [0, T ]-
valued predictable time τ there exists an Fτ−-measurable random variable Υ satisfying

E

[
λ

∫ T

0

e−β|σ−t|dX i
t + λ

∫ σ−

0

e−β(σ−t)
∑
j ̸=i

dXj
t + ϑσ∆X

i
σ +

λ

2

∑
j ̸=i

∆Xj
σ

∣∣∣∣Fτ−

]
= Υ a.s.

8i.e., there exists C > 0 such that for all φ, the equilibrium X∗,i(φ) corresponding to φ satisfies
supt∈[0,T ] |X

∗,i
t (φ)| ≤ C, and an analogous statement holds for the derivatives Ẋ∗,i(φ).
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for all predictable times σ satisfying τ ≤ σ ≤ T . In particular, we may take

Υ = E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t + ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

∣∣∣∣Fτ−

]
.

Proof. Let τ and σ ≥ τ be arbitrary [0, T ]-valued predictable stopping times. Fixing some
A ∈ Fτ− we can consider the round trip trade Z defined by

Zt = 1A (1t≥τ − 1t≥σ) .

If we perturb X i by αZ (α ∈ R) we get from Proposition 2.2 the cost

JB(X
i + αZ;X−i)

=
1

2
E

 ∑
t∈[0,T ]

ϑt(∆X
i
t + α∆Zt)

2

+ λE
[
1

2

∫ T

0

∫ T

0

e−β|t−s|d(X i
s + αZs)d(X

i
t + αZt)

+

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dXj
sd(X

i
t + αZt) +

1

2

∑
j ̸=i

∑
t∈[0,T ]

(∆X i
t + α∆Zt)∆X

j
t

]
.

Differentiating this expression with respect to α and setting α = 0 yields

d

dα
JB(X

i + αZ;X−i)|α=0 = E

 ∑
t∈[0,T ]

ϑt∆X
i
t∆Zt

+ λE
[ ∫ T

0

∫ T

0

e−β|t−s|dX i
sdZt

+

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dXj
sdZt +

1

2

∑
j ̸=i

∑
t∈[0,T ]

∆Zt∆X
j
t

]
.

Therefore, a necessary first-order condition for optimality is

0 = E

 ∑
t∈[0,T ]

ϑt∆X
i
t∆Zt

+ λE
[ ∫ T

0

∫ T

0

e−β|t−s|dX i
sdZt

+

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dXj
sdZt +

1

2

∑
j ̸=i

∑
t∈[0,T ]

∆Zt∆X
j
t

]
.

By substituting in the form of Z we obtain

0 = E
[
1A

(
ϑτ∆X

i
τ − ϑσ∆X

i
σ

)]
+ λE

[
1A

(∫ T

0

(e−β|τ−t| − e−β|σ−t|)dX i
t

+

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t −

∫ σ−

0

e−β(σ−t)
∑
j ̸=i

dXj
t +

1

2

∑
j ̸=i

(∆Xj
τ −∆Xj

σ)

)]
,
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which becomes, after rearranging,

E

[
1A

(
ϑτ∆X

i
τ + λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t +

λ

2

∑
j ̸=i

∆Xj
τ

)]

= E

[
1A

(
ϑσ∆X

i
σ + λ

∫ T

0

e−β|σ−t|dX i
t + λ

∫ σ−

0

e−β(σ−t)
∑
j ̸=i

dXj
t +

λ

2

∑
j ̸=i

∆Xj
σ

)]
.

Iterative conditioning on Fτ− under the expectation completes the proof after noting that
A ∈ Fτ− was arbitrary.

For the proof of Lemma E.3 below it will be helpful to approximate predictable times
with times where the inventories do not jump. That is feasible according to the next lemma,
which is a straightforward generalization of [31, Lemma B.1]. We omit the proof.

Lemma E.2. Let X be an admissible strategy profile and let τ, σ be predictable stopping
times satisfying τ ≤ σ ≤ T . There exists a sequence (τn)n≥0 of predictable times satisfying

(i) τ ≤ τn ≤ σ with τn ↓ τ a.s.,

(ii) τ < τn on {τ < σ},

(iii) ∆X i
τn = 0 on {τn < σ} for i = 1, . . . , N .

In particular, limn→∞∆X i
τn = 0 on {τ < σ} for all i.

With this we are ready to prove the following necessary conditions for the jumps of a
best response to a strategy profile X−i.

Lemma E.3. Fix an admissible strategy profile X and suppose that X i is optimal for
JB(·,X−i). If τ is any [0, T ]-valued predictable stopping time, then(

ϑτ∆X
i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

)
1{τ>0} = 0, a.s. (E.1)

and (
ϑτ∆X

i
τ −

λ

2

∑
j ̸=i

∆Xj
τ

)
1{τ<T} = 0, a.s. (E.2)

Proof. By predictability there exists an announcing sequence of stopping times τn ↑ τ with
τn < τ on {τ > 0} and τn = 0 on {τ = 0}. Moreover, we can take these times to be
predictable (see [36, Corollary 2.1]). At the same time, for each τn we can apply Lemma E.2
to find a sequence (τn,m)m≥0 satisfying (i) τn ≤ τn,m ≤ τ with τn,m ↓ τn as m ↑ ∞, (ii)
τn < τn,m on {τn < τ}, and (iii) ∆X i

τn,m
= 0 for all i on {τn,m < τ}.
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Applying Lemma E.1 twice and using the absence of jumps at τn,m on {τn,m < τ},

E

[
λ

∫ T

0

e−β|τn,m−t|dX i
t + λ

∫ τn,m−

0

e−β(τn,m−t)
∑
j ̸=i

dXj
t

+

(
ϑτn,m∆X

i
τn,m

+
λ

2

∑
j ̸=i

∆Xj
τn,m

)
1{τn,m=τ}

∣∣∣∣Fτn−

]

= E

[
λ

∫ T

0

e−β|τn−t|dX i
t + λ

∫ τn−

0

e−β(τn−t)
∑
j ̸=i

dXj
t + ϑτn∆X

i
τn +

λ

2

∑
j ̸=i

∆Xj
τn

∣∣∣∣Fτn−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t + ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

∣∣∣∣Fτn−

]
.

We focus on the first and last expectation in this chain of equalities. Taking m ↑ ∞ we get,
by the dominated convergence theorem,

E

[
λ

∫ T

0

e−β|τn−t|dX i
t + 1{τn<τ}λ

∫ τn

0

e−β(τn−t)
∑
j ̸=i

dXj
t + 1{τn=τ}λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t

+

(
ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

)
1{τn=τ}

∣∣∣∣Fτn−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t + ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

∣∣∣∣Fτn−

]
.

Here, we have used that limm→∞∆X i
τn,m

= 0 on {τn < τ} for all i and ∆X i
τn,m

= ∆X i
τ on

{τn = τ} for all i. By definition of the announcing sequence we have {τn = τ} = {τ = 0}, so

E

[
λ

∫ T

0

e−β|τn−t|dX i
t + 1{τ>0}λ

∫ τn

0

e−β(τn−t)
∑
j ̸=i

dXj
t +

(
ϑ0∆X

i
0 +

λ

2

∑
j ̸=i

∆Xj
0

)
1{τ=0}

∣∣∣∣Fτn−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t + ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

∣∣∣∣Fτn−

]
.

Then, taking n ↑ ∞ and applying the dominated convergence theorem for conditional ex-
pectations [12, Theorem 4.6.10],

E

[
λ

∫ T

0

e−β|τ−t|dX i
t + 1{τ>0}λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t +

(
ϑ0∆X

i
0 +

λ

2

∑
j ̸=i

∆Xj
0

)
1{τ=0}

∣∣∣∣Fτ−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t + ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

∣∣∣∣Fτ−

]
.

Rearranging shows that

E

[(
ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

)
1{τ>0}

∣∣∣∣Fτ−

]
= 0.
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In view of the predictability of X we recover (E.1).
On the other hand, we can once again choose a sequence of stopping times τn ↓ τ satisfying

the conditions of Lemma E.2 with the choice of σ ≡ T . Applying Lemma E.1 we have

E

[
λ

∫ T

0

e−β|τn−t|dX i
t + λ

∫ τn−

0

e−β(τn−t)
∑
j ̸=i

dXj
t +

(
ϑT∆X

i
T +

λ

2

∑
j ̸=i

∆Xj
T

)
1{τ=T}

∣∣∣∣Fτ−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t + ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

∣∣∣∣Fτ−

]
.

Passing to the limit, by the dominated convergence theorem,

E

[
λ

∫ T

0

e−β|τ−t|dX i
t + 1τ<Tλ

∫ τ

0

e−β(τ−t)
∑
j ̸=i

dXj
t

+

(
λ

∫ T−

0

e−β(T−t)
∑
j ̸=i

dXj
t + ϑT∆X

i
T +

λ

2

∑
j ̸=i

∆Xj
T

)
1{τ=T}

∣∣∣∣Fτ−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t + ϑτ∆X

i
τ +

λ

2

∑
j ̸=i

∆Xj
τ

∣∣∣∣Fτ−

]
.

Subtracting the left-hand side from the right we obtain

E

[(
ϑτ∆X

i
τ −

λ

2

∑
j ̸=i

∆Xj
τ

)
1{τ<T}

∣∣∣∣Fτ−

]
= 0.

Using predictability once more yields the condition (E.2).

Proposition 4.1 is a direct consequence of the following, more precise result.

Proposition E.4. Fix an admissible strategy profile X and suppose X i is optimal for
JB(·,X−i).

(i) The initial and terminal jumps of X i satisfy

ϑ0∆X
i
0 =

λ

2

∑
j ̸=i

∆Xj
0 , ϑT∆X

i
T = −λ

2

∑
j ̸=i

∆Xj
T .

(ii) If ϑt > 0 at t ∈ (0, T ) then X i has no interior jump at t,

∆X i
t = 0, a.s.

(iii) If there exists t ∈ [0, T ] such that ϑt = 0 and P
(∑

j ̸=i ∆X
j
t ̸= 0

)
> 0, then no optimal

strategy X i exists.

If X is a Nash Equilibrium, then there are no interior jumps, irrespective of ϑ. Furthermore,
if ϑ0 = 0 or ϑT = 0, then there are no jumps at 0 or T in equilibrium, respectively.
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Proof. (i) Taking τ ≡ T in (E.1) and τ ≡ 0 in (E.2) gives the two equations in the proposition.
(ii) Let ϑt > 0 for some t ∈ (0, T ). Then we can take τ ≡ t and sum across (E.1) and (E.2)
to get

2ϑt∆X
∗,i
t = 0, a.s.,

which implies the result. (iii) Fix t such that ϑt = 0 and P
(∑

j ̸=i ∆X
j
t ̸= 0

)
> 0. By

Lemma E.3 if X i is admissible and optimal for X−i then one (or both) of (E.1) and (E.2)
hold at t. In this case these read

λ

2

∑
j ̸=i

∆Xj
t 1{t>0} = 0 a.s. and − λ

2

∑
j ̸=i

∆Xj
t 1{t<T} = 0 a.s. (E.3)

which, as λ > 0, implies the contradiction that
∑

j ̸=i ∆X
j
t = 0 a.s.

To characterize the jumps in equilibrium we leverage the concurrent satisfaction of (E.1)
and (E.2) for all i. If ϑt > 0 for t ∈ (0, T ), the absence of interior jumps at t follows from (ii).
If ϑt = 0 for t ∈ [0, T ] (note the inclusion of 0 and T ) then in equilibrium we can sum over
i = 1, . . . , N in either (E.1) or (E.2) to get

λ(N − 1)

2

N∑
i=1

∆X∗,i
t = 0.

Again, as N ≥ 2 and λ > 0 this implies
∑N

i=1∆X
∗,i
i = 0 which, when combined with (E.1)

or (E.2) holding at t for all i (see (E.3)), implies that ∆X∗,i
t = 0 for all i. This completes

the proof.

E.2 Lemma 4.2

Let X∗ = (X∗,1, . . . , X∗,N) be a Nash equilibrium in the class of deterministic strategies
that are absolutely continuous on (0, T ). By Lemma 2.6 it suffices to show that X∗ is also
a Nash equilibrium in the class of deterministic strategies. Suppose for contradiction that
X∗ is not a Nash equilibrium in the class of deterministic strategies. Then, there exists a
deterministic admissible strategy Z = (Zt)t≥0 satisfying

JB(Z;X
∗,−i) < JB(X

∗,i,X∗,−i).

By definition of CB(·) (see (2.5)) it is safe to assume that ZT = 0.
We will approximate Z by a sequence of admissible controls that are absolutely continuous

on (0, T ). For concreteness, we will use the Bernstein polynomials Bn(f) defined for functions
f on [0, 1] via the Bernstein operator Bn, n = 1, 2, . . .,

Bn(f)(t) =
n∑

k=0

f

(
k

n

)(
n

k

)
tk(1− t)n−k, t ∈ [0, 1].

We extend the definition to functions on [0, T ] via the isomorphism ι(t) = t/T and abuse
notation by still writing Bn(f) for this approximation. Define an auxiliary process Z̃ by
Z̃t = Zt for t ∈ [0, T ) and Z̃T = ZT−. We define our approximating sequence (Zn)n≥1 by
Zn

t := Bn(Z̃)(t) on [0, T ) with Zn
0− = Z0− = xi and Zn

T = ZT = 0.
We collect here several critical properties of the approximating sequence.
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(a) (Matching Endpoints) By definition of Bn and Zn, there is no approximation error at
the endpoints {0−, 0, T−, T}.

(b) (Smoothing) Let TV (·; [a, b]) denote the total variation of a function on [a, b]. The
smoothing property (see [22] or [4, Proposition 4.16]) of Bn gives TV (Zn; [0, T )) ≤
TV (Z; [0, T )). By additivity of the total variation on intervals and (a), we can extend
this to include any jumps at 0 and T . That is, TV (Zn; [0−, T ]) ≤ TV (Z; [0−, T ]).

(c) (Uniformly Bounded) As TV (Zn; [0−, T ]) is uniformly bounded by (b) and Zn
0− = xi

for all n, we have that ∥Zn∥∞ and ∥Zn − Z∥∞ are uniformly bounded.

(d) (Consistency) Since Z is càdlàg, it only has discontinuities of the first kind. As a result
(see, e.g., [4, Section 4.5.1])

Zn
t → Zt− + Zt+

2
, ∀t ∈ (0, T ).

Since the discontinuities of Z are at most countable, Zn converges to Z almost every-
where. Moreover, by (c) and the dominated convergence theorem, Zn → Z in L1.

In view of (a), it is clear that Zn is an admissible deterministic strategy. Moreover, by the
definition of Bn it is absolutely continuous on (0, T ). The objective representation in (2.8)
tells us that for Z,

JB(Z;X
∗,−i) = λ

(
1

2

∫ T

0

∫ T

0

e−β|t−s|dZsdZt +

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZt

+
1

2

∑
j ̸=i

∑
t∈{0,T}

∆X∗,j
t ∆Zt

)
+

1

2

∑
t∈[0,T ]

ϑt(∆Zt)
2.

Note that we have enforced in (2.8) the assumption that ∆X∗,j
t = 0 for all t ∈ (0, T ) when

i ̸= j. For Zn we have

JB(Z
n;X∗,−i) = λ

(
1

2

∫ T

0

∫ T

0

e−β|t−s|dZn
s dZ

n
t +

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZn

t

+
1

2

∑
j ̸=i

∑
t∈{0,T}

∆X∗,j
t ∆Zn

t

)
+

1

2

∑
t∈{0,T}

ϑt(∆Z
n
t )

2

= λ

(
1

2

∫ T

0

∫ T

0

e−β|t−s|dZn
s dZ

n
t +

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZn

t

+
1

2

∑
j ̸=i

∑
t∈{0,T}

∆X∗,j
t ∆Zt

)
+

1

2

∑
t∈{0,T}

ϑt(∆Zt)
2.

In the second equality we have used (a) to identify the jumps at the endpoints with those
of Z.
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Next, we claim that

lim
n→∞

(
JB(Z

n;X∗,−i)− JB(Z;X
∗,−i)

)
(E.4)

= lim
n→∞

[
λ

(
1

2

∫ T

0

∫ T

0

e−β|t−s|dZn
s dZ

n
t − 1

2

∫ T

0

∫ T

0

e−β|t−s|dZsdZt

+

∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZn

t −
∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZt

)
− 1

2

∑
t∈(0,T )

ϑt(∆Zt)
2

]

= −1

2

∑
t∈(0,T )

ϑt(∆Zt)
2 ≤ 0.

We will prove this by treating each of the integrals in turn. Using Lebesgue–Stieltjes inte-
gration by parts and (a),∫ T

0

e−β|t−s|dZn
s = e−β(T−t)Zn

T − e−βtZn
0− − β

∫ T

0

sign(t− s)Zn
s e

−β|t−s|ds

= −e−βtxi − β

∫ T

0

sign(t− s)Zn
s e

−β|t−s|ds, t ∈ [0, T ]. (E.5)

Repeating this for
∫ T

0
e−β|t−s|dZs gives, using (d), that∣∣∣∣∫ T

0

e−β|t−s|dZn
s −

∫ T

0

e−β|t−s|dZs

∣∣∣∣ ≤ β

∫ T

0

|Zn
s − Zs|e−β|t−s|ds ≤ β∥Zn − Z∥L1 → 0. (E.6)

To keep notation compact define Hn
t :=

∫ T

0
e−β|t−s|dZn

s and Ht :=
∫ T

0
e−β|t−s|dZs. By (E.5)

and dominated convergence, it is clear that Hn (and H) are continuous in t. Moreover, the
uniform estimate in (E.6) shows that ∥Hn −H∥∞ → 0. As a result, by applying (b),∣∣∣∣∫ T

0

Hn
t dZ

n
t −

∫ T

0

HtdZ
n
t

∣∣∣∣ ≤ ∥Hn −H∥∞TV (Zn; [0−, T ]) ≤ ∥Hn −H∥∞TV (Z; [0−, T ]) → 0.

At the same time, by Fubini’s theorem and the symmetry |t− s| = |s− t|,∣∣∣∣∫ T

0

HtdZ
n
t −

∫ T

0

HtdZt

∣∣∣∣ = ∣∣∣∣∫ T

0

∫ T

0

e−β|t−s|dZsdZ
n
t −

∫ T

0

HtdZt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫ T

0

e−β|t−s|dZn
t dZs −

∫ T

0

HtdZt

∣∣∣∣
=

∣∣∣∣∫ T

0

Hn
s dZs −

∫ T

0

HtdZt

∣∣∣∣
≤ ∥Hn −H∥∞TV (Z; [0−, T ]) → 0.
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Taken together,∣∣∣∣∫ T

0

∫ T

0

e−β|t−s|dZn
s dZ

n
t −

∫ T

0

∫ T

0

e−β|t−s|dZsdZt

∣∣∣∣ (E.7)

=

∣∣∣∣∫ T

0

Hn
t dZ

n
t −

∫ T

0

HtdZt

∣∣∣∣
≤
∣∣∣∣∫ T

0

Hn
t dZ

n
t −

∫ T

0

HtdZ
n
t

∣∣∣∣+ ∣∣∣∣∫ T

0

HtdZ
n
t −

∫ T

0

HtdZt

∣∣∣∣→ 0.

We turn to the final set of integrals in (E.4). Define the function I−i by

I−i
t :=

∫ t

0

e−β(t−s)
∑
j ̸=i

dX∗,j, t ∈ [0, T ],

with I−i
0− = I−i

0 = 0. Notice that this does not depend on Zn or Z, and by our assumption
on X∗, I−i is absolutely continuous. By integration by parts (using Zn

T = 0 and I−i
0− = 0),∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZn

t =

∫ T

0

I−i
t−dZ

n
t = −

∫ T

0

Zn
t−dI

−i
t .

Repeating this for Z, it follows that∣∣∣∣∣
∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZn

t −
∫ T

0

∫ t−

0

e−β(t−s)
∑
j ̸=i

dX∗,j
s dZt

∣∣∣∣∣ (E.8)

=

∣∣∣∣∫ T

0

Zn
t− − Zt−dI

−i
t

∣∣∣∣ ≤ ∫ T

0

∣∣Zn
t− − Zt−

∣∣ |dI−i
t |,

where |dI−i
t | denotes the total variation measure associated with I−i. As, by assumption,

I−i is absolutely continuous with finite variation, |dI−i
t | defines a finite positive measure that

is absolutely continuous with respect to the Lebesgue measure. Then, since ∥Zn − Z∥∞ is
bounded by (c) and Zn → Z Lebesgue-a.e. (and hence, also |dI−i|-a.e.),∫ T

0

∣∣Zn
t− − Zt−

∣∣ |dI−i
t | → 0 (E.9)

by dominated convergence. Combining (E.7), (E.8), and (E.9) proves (E.4).
We conclude

lim
n→∞

JB(Z
n;X∗,−i) ≤ JB(Z;X

∗,−i) < JB(X
∗,i;X∗,−i).

But then JB(Zn;X∗,−i) < JB(X
∗,i;X∗,−i) for n sufficiently large, contradicting the optimal-

ity of X∗,i in the class of strategies that are absolutely continuous on (0, T ).
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E.3 Lemma 4.3

To derive the characterization in Lemma 4.3 we will make use of the fact that R× L2[0, T ]
is a Hilbert space when equipped with the inner product

⟨(a, v), (a′, v′)⟩ = aa′ + ⟨v, v′⟩L2[0,T ].

As in the proof of Lemma 3.1, we will take the Gateaux differential of JB, but this time in
an arbitrary direction (h, η) ∈ R× L2[0, T ]. We begin by taking the Gateaux differential of
the objective JB(·, ·;v−i) in the direction (0, η) in steps. Observe

δ(0,η)b
i = −

∫ T

0

ηtdt, and δ(0,η)

(
θa
2
(ai)2 +

θb
2
(bi)2

)
= θbb

iδ(0,η)b
i = −

∫ T

0

θbb
iηtdt.

Similarly,

δ(0,η)It =

∫ t

0

e−β(t−s)ληsds, t ∈ [0, T )

and

δ(0,η)

[
1

2
(IT− + IT )b

i

]
= δ(0,η)

[
IT−b

i +
λ

2

(
N∑
j=1

bj

)
bi

]

= δ(0,η)IT−b
i + IT δ(0,η)b

i − λ

2

(∑
j ̸=i

b(j)

)
δ(0,η)b

i.

Working now directly with JB we get

δ(0,η)J (ai, vi;v−i) =

∫ T

0

[δ(0,η)Itv
i
t + ηtIt]dt+ δ(0,η)IT−b

i + IT δ(0,η)b
i

− λ

2

(∑
j ̸=i

bj

)
δ(0,η)b

i −
∫ T

0

θbb
iηtdt

=

∫ T

0

[δ(0,η)Itv
i
t + ηtIt]dt+ bi

∫ T

0

e−β(T−t)ληtdt−
∫ T

0

ITηtdt

+

∫ T

0

λ

2

(∑
j ̸=i

bj

)
ηtdt−

∫ T

0

θbb
iηtdt

=

∫ T

0

δ(0,η)Itv
i
tdt+

∫ T

0

[
It − IT + λbie−β(T−t) +

λ

2

(∑
j ̸=i

bj

)
− θbb

i

]
ηtdt.

By changing the order of integration, the first term can be written∫ T

0

δ(0,η)Itv
i
tdt =

∫ T

0

∫ t

0

λe−β(t−s)vitηsdsdt =

∫ T

0

∫ T

s

λe−β(t−s)vitηsdtds.

If we let

Y i
t := λbie−β(T−t) +

∫ T

t

λe−β(s−t)visds, t ∈ [0, T ],
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then the Gateaux differential can be written

δ(0,η)J (ai, vi;v−i) =

∫ T

0

[
Y i
t + It − IT +

λ

2

(∑
j ̸=i

bj

)
− θbb

i

]
ηtdt. (E.10)

Next, we take the Gateaux differential in the direction (1, 0) ∈ R× L2[0, T ]. Note that

δ(1,0)It = λe−βt, t ∈ [0, T ),

δ(1,0)

(
θa
2
(ai)2 +

θb
2
(bi)2

)
= θaa

i + θbb
iδ(1,0)b

i = θaa
i − θbb

i,

and

δ(1,0)

[
1

2
I0a

i

]
=

1

2

[
δ(1,0)I0a

i + λ

(
ai +

∑
j ̸=i

aj

)]
= λai +

λ

2

∑
j ̸=i

aj.

Moreover,

δ(1,0)

[
1

2
(IT− + IT ) b

i

]
= δ(1,0)

[
IT−b

i +
λ

2

(
bi +

∑
i ̸=j

bj

)
bi

]

= δ(1,0)IT−b
i + IT−δ(1,0)b

i + λbiδ(1,0)b
i +

λ

2

(∑
i ̸=j

bj

)
δ(1,0)b

i

= δ(1,0)IT−b
i − IT− − λbi − λ

2

(∑
i ̸=j

bj

)

= δ(1,0)IT−b
i − IT +

λ

2

(∑
i ̸=j

bj

)
.

Putting all this together we find

δ(1,0)J (ai, vi;v−i)

= λai +
λ

2

∑
j ̸=i

aj +

∫ T

0

δ(1,0)Itv
i
tdt+ δ(1,0)IT−b

i − IT +
λ

2

(∑
i ̸=j

bj

)
+ θaa

i − θbb
i

= λai +
λ

2

∑
j ̸=i

aj +

∫ T

0

λvite
−βtdt+ λe−βT bi − IT +

λ

2

(∑
i ̸=j

bj

)
+ θaa

i − θbb
i.

Rewriting the last equality yields

δ(1,0)J (ai, vi;v−i) = I0 − IT + Y0 + θaa
i − λ

2

∑
j ̸=i

aj +
λ

2

∑
i ̸=j

bj − θbb
i. (E.11)
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Combining (E.10) and (E.11) we get the Gateaux differential in an arbitrary direction (h, η),

δ(h,η)J (ai, vi;v−i) =

(
I0 − IT + Y0 + θaa

i − λ

2

∑
j ̸=i

aj +
λ

2

∑
i ̸=j

bj − θbb
i

)
h

+

∫ T

0

[
Y i
t + It − IT +

λ

2

(∑
j ̸=i

bj

)
− θbb

i

]
ηtdt.

Reasoning as in Lemma 3.1 (see also Appendix B) we have that the necessary and sufficient
first-order conditions for optimality are

IT = Y i
t + It +

λ

2

(∑
j ̸=i

bj

)
− θbb

i, t ∈ [0, T ) (E.12)

and

IT = Y i
0 + I0 +

λ

2

(∑
j ̸=i

bj

)
− θbb

i + θaa
i − λ

2

(∑
j ̸=i

aj

)
. (E.13)

By symmetry, an equilibrium is achieved if and only if these first-order conditions hold si-
multaneously for all i = 1, . . . , N . Differentiating (E.12) (note that I and Y are differentiable
almost everywhere by definition) leads to the equilibrium system of ODEs,

0 = Ẏ i
t + İt, i = 1, . . . , N,

Ẏ i
t = βY i

t − λvit, i = 1, . . . , N,

İt = −βIt + λ
N∑
i=1

vit.

Writing this in terms of X i
t , for almost every t ∈ (0, T ),

0 = Ẏ i
t + İt, i = 1, . . . , N,

Ẏ i
t = βY i

t − λẊ i
t , i = 1, . . . , N,

İt = −βIt + λ
N∑
i=1

Ẋ i
t ,

subject to the initial and terminal conditions

I0 = λ

N∑
i=1

ai, X i
0 = xi + ai, Y i

T = λbi, i = 1, . . . , N.

By rearranging the system we can write it in the standard form reported in Lemma 4.3. More-
over, from that representation we see that any solution to this system must have derivatives
that are equal almost everywhere to continuous functions. Thus, without loss of generality,
we identify the derivatives of the equilibrium I, Y i and X i (if an equilibrium exists) with
their continuous versions and interpret the ODE in the classical sense.
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We now turn to the additional consistency conditions that the initial and terminal block
trades must satisfy. Specifically, letting t ↓ 0 in (E.12) and comparing with (E.13) we find
that the optimal a must satisfy

θaa
i =

λ

2

∑
j ̸=i

aj. (E.14)

Sending t ↑ T in (E.12) we get

IT = λbi + IT− +
λ

2

(∑
j ̸=i

bj

)
− θbb

i.

By rearranging,

λ

N∑
j=1

bj = λbi +
λ

2

(∑
j ̸=i

bj

)
− θbb

i,

which yields

θbb
i = −λ

2

∑
j ̸=i

bj. (E.15)

Moreover, since we require liquidation by T ,

bi = −X i
T−, i = 1, . . . , N. (E.16)

Again, by symmetry in equilibrium, we arrive at the conditions reported in the lemma. Note
that (E.14) and (E.15) are exactly the conditions of Proposition 4.1. In summary, these
ODEs and consistency conditions necessarily hold in equilibrium.

For sufficiency we use that an equilibrium is attained if and only if (E.12) and (E.13)
hold. Enforcing (E.14), (E.15) and (E.16) we have that (E.12) and (E.13) reduce (after some
manipulation) to

IT− − It = −(Y i
T − Y i

t ) and IT− − I0 = −(Y i
T − Y i

0 ).

This must be satisfied if the ODE holds for I on [0, T ) and Y on [0, T ] since

IT− − It =

∫ T

t

İtdt and − (Y i
T − Y i

t ) = −
∫ T

t

Ẏtdt.

The right-hand side of both these equations must coincide by the ODE for all t ∈ [0, T ).
Thus, to obtain an equilibrium for the game it is sufficient to solve the ODE for fixed
boundary conditions and enforce the consistency equations (E.14), (E.15), and (E.16) for
the boundaries.

E.4 Theorem 4.4

We will prove Theorem 4.4 in stages. First we will fix the boundary conditions and solve the
ODE from Lemma 4.3. Then, we will use the consistency conditions to show conclusions (1)–
(3) for a deterministic equilibrium and derive the form of the equilibrium (when it exists).
Finally, we will show that when a deterministic equilibrium does not exist, neither does an
equilibrium in the full class of admissible strategies.
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Step 1: Solving the ODE for fixed boundary conditions.

Defining the vector F = (I, Y 1, . . . , Y N , X1, . . . , XN), we can write the ODE from Lemma 4.3
in the matrix form

Ḟt = AFt

where

A =
β

N − 1



1 −1 −1 . . . −1 −1 0 . . . 0
−1 1 1 . . . 1 1 0 . . . 0
...

...
...

...
...

...
...

...
...

−1 1 1 . . . 1 1 0 . . . 0
λ−1 (N − 2)λ−1 −λ−1 . . . −λ−1 −λ−1 0 . . . 0
λ−1 −λ−1 (N − 2)λ−1 . . . −λ−1 −λ−1 0 . . . 0
...

...
... . . . ...

...
...

...
λ−1 −λ−1 −λ−1 . . . (N − 2)λ−1 −λ−1 0 . . . 0
λ−1 −λ−1 −λ−1 . . . −λ−1 (N − 2)λ−1 0 . . . 0


.

The only non-zero eigenvalue of this matrix is z1 =
N+1
N−1

β. The associated eigenvector is

q1 =



N+1
2
λ

−N+1
2
λ

...
−N+1

2
λ

1
...
1


.

The remaining (non-zero) eigenvectors are q1+j = eN+1+j for j = 1, . . . , N where ei is the
ith Euclidean basis vector. This is the exhaustive set of linearly independent eigenvectors
corresponding to the eigenvalue 0 since the dimension of the solution to the eigenvector
equation

Aq = 0q = 0

is exactly the dimension of the nullspace of A. We can see that A is of rank N + 1 (as the
first N + 1 columns are linearly independent) and thus, by the rank–nullity theorem the
nullspace has dimension N .

In order to completely characterize the solution to the ODE we must find N additional
generalized eigenvectors corresponding to the eigenvalue 0. These generalized eigenvectors
(qN+1+j)

N
j=1 solve

AqN+1+j = q1+j, j = 1, . . . , N

and must be linearly independent of qj, j = 1, . . . , N + 1. It is easy to verify that we can
take qN+1+j = λ

β
[e1 + ej] for j = 1, . . . , N . Therefore, the general solution to the matrix

ODE is given by

Ft = c1q1e
z1t +

N∑
j=1

(c1+jq1+j + cN+1+j(tq1+j + qN+1+j)).
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We now solve for the constants c := (c1, . . . , c2N+1)
⊤ by enforcing the boundary condi-

tions. Reading off of the equation for F we get

I0 = c1
N + 1

2
λ+

λ

β

N∑
i=1

cN+1+i = λ

N∑
i=1

ai,

Y i
T = −c1

N + 1

2
λez1T +

λ

β
cN+1+i = λbi, i = 1, . . . , N,

X i
0 = c1 + c1+i = xi + ai, i = 1, . . . , N.

Summing the second set of equations over i we find

−c1
N(N + 1)

2
λez1T +

λ

β

N∑
i=1

cN+1+i = λ

N∑
i=1

bi.

Subtracting this from the first equation,

c1
N + 1

2
λ+ c1

N(N + 1)

2
λez1T = λ

N∑
i=1

(ai − bi).

Solving for c1 yields

c1 =
2
∑N

i=1(a
i − bi)

(N + 1)(1 +Nez1T )
.

Substituting this back into the initial equations we find

c1+i = xi + ai −
2
∑N

j=1(a
j − bj)

(N + 1)(1 +Nez1T )
, i = 1, . . . , N

and

cN+1+i = βbi + βez1T
∑N

j=1(a
j − bj)

(1 +Nez1T )
, i = 1, . . . , N.

These define the solution to the ODE uniquely for fixed xi, ai and bi, i = 1, . . . , N .

Step 2: Solving for the deterministic equilibrium.

We now study the conditions that a = (a1, . . . , aN)⊤ and b = (b1, . . . , bN)⊤ need to satisfy.
Our first result characterizes the solution to the system of equations for a and b.

Lemma E.5.

(i) If a satisfies

θaa
i =

λ

2

∑
j ̸=i

aj, i = 1, . . . , N

then ai = aj for all i, j = 1, . . . , N . If, in addition, θa ̸= λ(N−1)
2

then a = 0.
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(ii) If b satisfies

θbb
i = −λ

2

∑
j ̸=i

bj, i = 1, . . . , N

then
∑N

i=1 b
i = 0. If, in addition, θb ̸= λ

2
then b = 0.

Proof. Let 1 = (1, . . . , 1)⊤ be the vector of ones and Id be the identity matrix. The system
of equations for a can be written as Ma = 0 where M = (θa +

λ
2
)Id− λ

2
11⊤. Similarly, the

system of equations for b can be written as M̃b = 0 where M̃ = (θb − λ
2
)Id + λ

2
11⊤.

If M is invertible then we must have a = 0. Similarly, if M̃ is invertible, then b = 0. By
the Matrix Determinant Lemma,

det(M) =

(
θa +

λ

2

)N

−N
λ

2

(
θa +

λ

2

)N−1

,

det(M̃) =

(
θb −

λ

2

)N

+N
λ

2

(
θb −

λ

2

)N−1

.

As a function of θa, the first equation has a root θa = −λ
2

of multiplicity N − 1 and a
remaining root of θa = λ(N−1)

2
. As a function of θb, the second equation has a root θb = λ

2

of multiplicity N − 1 and a remaining root of θb = −λ(N−1)
2

. Since λ, θa, θb > 0, the unique
feasible value of θa (resp. θb) that leads to the non-invertibility of M (resp. M̃) is θa = λ(N−1)

2

(resp. θb = λ
2
).

Suppose now that θa = λ(N−1)
2

and θb =
λ
2
. The nullspace of M is characterized by the

1-dimensional space of vectors a taking the form a = c1, for some c > 0. Similarly, the
nullspace of M̃ is given by the N −1 dimensional space of vectors b satisfying 1Tb = 0. This
completes the proof.

By Lemma E.5 we there must be an α ∈ R such that

ai = α i = 1, . . . , N, and
N∑
i=1

bi = 0.

Enforcing the conditions on a and b in the equations for the constants c, we get
c1 =

2Nα
(N+1)(1+Nez1T )

,

c1+i = xi + α− 2Nα
(N+1)(1+Nez1T )

i = 1, . . . , N,

cN+1+i = βbi + β Nez1Tα
1+Nez1T

i = 1, . . . , N.

Let

uN :=
2N

(N + 1)(1 +Nez1T )
, wN :=

Nez1T

1 +Nez1T

so that we may write more concisely,
c1 = uNα,

c1+i = xi + (1− uN)α i = 1, . . . , N,

cN+1+i = βbi + βwNα i = 1, . . . , N.
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It remains to enforce the terminal conditions (E.16). Thus, we solve the N + 1 dimensional
system {

bi = −X i
T− = −

[
c1e

z1T + c1+i + cN+1+iT
]
, i = 1, . . . , N,∑N

i=1 b
i = 0

for the N + 1 unknowns given by α and b. Inserting the form of c,

bi = −
[(
uNe

z1T + (1− uN) + βwNT
)
α + xi + βbiT

]
.

Let
rN := 1 + (ez1T − 1)uN + βwNT

so that
bi = −rNα− xi − βbiT.

Summing over i and using that
∑N

i=1 b
i = 0 we have

0 = −NrNα−
N∑
i=1

xi.

This implies
α = −r−1

N x. (E.17)

Substituting this back in, we get bi = x− xi − βbiT which yields

bi = − xi − x

1 + βT
. (E.18)

With this the final solution for the constants is
c1 = −uN

rN
x,

c1+i = xi − (1−uN )
rN

x = (xi − x) + rN−1+uN

rN
x i = 1, . . . , N,

cN+1+i = − β
1+βT

(xi − x)− βwN

rN
x i = 1, . . . , N.

Recalling that
X i

t = c1e
z1t + c1+i + cN+1+i, i = 1, . . . , N,

we recover (after simplification) the form of X∗ reported in Theorem 4.4. If θa = (N−1)λ
2

and θb =
λ
2
, then by Proposition 2.4 and Lemma 2.6 this defines the unique equilibrium for

all initial inventories. Hence, we have shown case (1) of Theorem 4.4.
Next, we address cases (2)–(3) for deterministic controls. If θa ̸= λ(N−1)

2
then Lemma E.5

implies α = 0. But then (E.17) can only be true if x = 0. On the other hand, if θb ̸= λ
2

then Lemma E.5 further requires that b = 0. In order to have a consistent solution, (E.18)
mandates that xi = x = xj for all i, j = 1, . . . , N . In summary, for cases (2) and (3) we have
derived the unique equilibrium (again by Proposition 2.4 and Lemma 2.6) when the initial
inventories satisfy the stated conditions. We also have that a deterministic equilibrium
cannot exist otherwise by the aforementioned inconsistencies. It remains to show that this
non-existence generalizes to arbitrary equilibria.
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Step 3: Extending non-existence to the class of admissible strategies.

We will treat cases (2) and (3) of Theorem 4.4 separately.

Case (2): It suffices to show that if ϑ0 ̸= λ(N−1)
2

and a Nash equilibrium exists, then x = 0.
Proposition 4.1 implies an equilibrium system of equations for ∆X∗,i

0 and ∆X∗,i
T that

coincides with the one in Lemma E.5. We have assumed ϑ0 ̸= λ(N−1)
2

, so we can conclude
that ∆X∗,i

0 = 0 for all i and
∑N

i=1∆X
∗,i
T = 0. Moreover, again by Proposition 4.1, there are

no interior jumps. Then, by Lemma E.1, for all predictable σ ≥ τ ,

E

[
λ

∫ T

0

e−β|σ−t|dX i
t + λ

∫ σ−

0

e−β(σ−t)
∑
j ̸=i

dXj
t +

(
ϑT∆X

i
T +

λ

2

∑
j ̸=i

∆Xj
T

)
1{σ=T}

∣∣∣∣Fτ−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dXj
t +

(
ϑT∆X

i
T +

λ

2

∑
j ̸=i

∆Xj
T

)
1{τ=T}

∣∣∣∣Fτ−

]
.

Recall from Proposition 4.1 that

ϑT∆X
∗,i
T = −λ

2

∑
j ̸=i

∆X∗,j
T = 0, i = 1, . . . , N.

Substituting this in, and rearranging terms,

E

[
λ

∫ T

σ

e−β(t−σ)dX i
t + λ

∫ σ−

0

e−β(σ−t)

N∑
j=1

dXj
t

∣∣∣∣Fτ−

]

= E

[
λ

∫ T

τ

e−β(t−τ)dX i
t + λ

∫ τ−

0

e−β(τ−t)

N∑
j=1

dXj
t

∣∣∣∣Fτ−

]
.

By averaging over i and using that the average process, X, has no jumps,

E
[
λ

∫ T

σ

e−β(t−σ)dX t +Nλ

∫ σ

0

e−β(σ−t)dX t

∣∣∣∣Fτ−

]
= E

[
λ

∫ T

τ

e−β(t−τ)dX t +Nλ

∫ τ

0

e−β(τ−t)dX t

∣∣∣∣Fτ−

]
.

Setting τ ≡ 0,

E
[
λ

∫ T

σ

e−β(t−σ)dX t +Nλ

∫ σ

0

e−β(σ−t)dX t

]
= E

[
λ

∫ T

0

e−βtdX t

]
.

Now the right-hand side is just a constant in σ. Taking σ to be any deterministic time in
[0, T ], this implies

E
[
λeβt

∫ T

t

e−βsdXs +Nλe−βt

∫ t

0

eβsdXs

]
= E

[
λ

∫ T

0

e−βtdX t

]
, ∀t ∈ [0, T ].
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Integrating by parts and dividing by λ,

E
[
e−β(T−t)XT −X t + β

∫ T

t

Xse
−β(s−t)ds+N

(
X t − e−βtX0 − β

∫ t

0

e−β(t−s)Xsds

)]
= E

[
e−βTXT −X0 + β

∫ T

0

e−βtX tdt

]
, ∀t ∈ [0, T ].

Using that XT = 0 and X0 = x we have, after collecting terms,

E
[
(N − 1)X t + β

∫ T

t

e−β(s−t)Xsds−Ne−βtx−Nβ

∫ t

0

e−β(t−s)Xsds

]
= E

[
−x+ β

∫ T

0

e−βtX tdt

]
, ∀t ∈ [0, T ].

Writing mt := E[X t], Fubini’s theorem yields

(N − 1)mt + β

∫ T

t

mse
−β(s−t)ds+ (1−Ne−βt)x−Nβ

∫ t

0

e−β(t−s)msds

= β

∫ T

0

e−βtmtdt, ∀t ∈ [0, T ].

While we already know that m is continuous (by the continuity of X and dominated con-
vergence), this equation further shows that mt is differentiable. Define

yt :=

∫ T

t

e−β(s−t)msds and ℓt :=

∫ t

0

e−β(t−s)msds,

so that our equation becomes

(N − 1)mt + βyt + (1−Ne−βt)m0 −Nβℓt = βyT , ∀t ∈ [0, T ].

Differentiating gives a system of ODEs,
ṁt = − β

N−1

(
ẏt +N(e−βtx− ℓ̇t)

)
, m0 = x, mT = 0,

ẏt = βyt −mt, yT = 0,

ℓ̇t = −βℓt +mt, ℓ0 = 0.

Ignoring the boundary condition m0 = x and solving the system gives the unique solution

mt =
N
(
(β (T − t)N + 2 + β (T − t)) e

β(N+1)T
N−1 − 2e

β(N+1)t
N−1

)
((βT + 1)N + βT + 3)Ne

β(N+1)T
N−1 −N + 1

x, t ∈ [0, T ].

If we now enforce that m0 = x we get the necessary condition(
(NβT + βT + 2) e

β(N+1)T
N−1 − 2

)
N

((βT + 1)N + βT + 3)Ne
β(N+1)T

N−1 −N + 1
x = x.
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If x ̸= 0 this can only be true if(
(NβT + βT + 2) e

β(N+1)T
N−1 − 2

)
N = ((βT + 1)N + βT + 3)Ne

β(N+1)T
N−1 −N + 1

which, for N > 0, is equivalent to

Ne
β(N+1)
N−1

T = −1.

However, the left-hand side is clearly positive, and we conclude that x = 0.

Case (3): For case (3) it suffices to show that if ϑT ̸= λ
2

and a Nash equilibrium exists,
then xi = xj for all i, j.

Proposition 4.1 tells us that there are no interior jumps and provides us a system of
equations for ∆X∗,i

0 and ∆X∗,i
T . This is the same system of equations as in Lemma E.5. In

this case ϑT ̸= λ
2
, so we can conclude that ∆X∗,i

T = 0 for all i and ∆X∗,i
0 = ∆X∗,j

0 for all i, j.
Then, by Lemma E.1, we have that for all predictable σ ≥ τ ,

E

[
λ

∫ T

0

e−β|σ−t|dX∗,i
t + λ

∫ σ−

0

e−β(σ−t)
∑
j ̸=i

dX∗,j
t +

(
ϑ0∆X

∗,i
0 +

λ

2

∑
j ̸=i

∆X∗,j
0

)
1{σ=0}

∣∣∣∣Fτ−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX∗,i
t + λ

∫ τ−

0

e−β(τ−t)
∑
j ̸=i

dX∗,j
t +

(
ϑ0∆X

∗,i
0 +

λ

2

∑
j ̸=i

∆X∗,j
0

)
1{τ=0}

∣∣∣∣Fτ−

]

for all i = 1, . . . , N . Appealing to Proposition 4.1 once again,

ϑ0∆X
∗,i
0 =

λ

2

∑
j ̸=i

∆X∗,j
0 , i = 1, . . . , N.

If we substitute this in and simplify,

E

[
λ

∫ T

0

e−β|σ−t|dX∗,i
t + λ

∫ σ

0

e−β(σ−t)
∑
j ̸=i

dX∗,j
t

∣∣∣∣Fτ−

]

= E

[
λ

∫ T

0

e−β|τ−t|dX∗,i
t + λ

∫ τ

0

e−β(τ−t)
∑
j ̸=i

dX∗,j
t

∣∣∣∣Fτ−

]
, i = 1, . . . , N.

Then, by subtracting any two equations when i ̸= k,

E
[
λ

∫ T

0

e−β|σ−t|d(X∗,i
t −X∗,k

t )− λ

∫ σ

0

e−β(σ−t)d(X∗,i
t −X∗,k

t )

∣∣∣∣Fτ−

]
= E

[
λ

∫ T

0

e−β|τ−t|d(X∗,i
t −X∗,k

t )− λ

∫ τ

0

e−β(τ−t)d(X∗,i
t −X∗,k

t )

∣∣∣∣Fτ−

]
.

This implies that

E
[
λ

∫ T

σ+

e−β|σ−t|d(X∗,i
t −X∗,k

t )

∣∣∣∣Fτ−

]
= E

[
λ

∫ T

τ+

e−β|τ−t|d(X∗,i
t −X∗,k

t )

∣∣∣∣Fτ−

]
.
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Summing over k ̸= i,

E

[
λ

∫ T

σ+

e−β|σ−t|d(NX∗,i
t −

N∑
i=1

X∗,k
t )

∣∣∣∣Fτ−

]
= E

[
λ

∫ T

τ+

e−β|τ−t|d(NX∗,i
t −

N∑
k=1

X∗,k
t )

∣∣∣∣Fτ−

]
,

which is equivalent to

E
[
λ

∫ T

σ+

e−β(t−σ)d(X∗,i
t −X t)

∣∣∣∣Fτ−

]
= E

[
λ

∫ T

τ+

e−β(t−τ)d(X∗,i
t −X t)

∣∣∣∣Fτ−

]
where X = N−1

∑N
i=1X

∗,i
t . Setting σ ≡ T and using predictability we get

0 = eβτE
[
λ

∫ T

τ+

e−βtd(X∗,i
t −X t)

∣∣∣∣Fτ−

]
. (E.19)

Note that the process X∗,i−X has no jumps since ∆X∗,i
0 = ∆X0 for all i = 1, . . . , N . Hence,

(E.19) implies that

0 = E
[
λ

∫ T

τ

e−βtd(X∗,i
t −X t)

∣∣∣∣Fτ−

]
. (E.20)

Let us define

Mt = E
[
λ

∫ T

0

e−βtd(X∗,i
t −X t)

∣∣∣∣Ft

]
, t ∈ [0, T ].

By definition, M is a right-continuous martingale with respect to the filtration F. Taking
limits from below and applying [12, Theorem 4.6.10],

Mt− = E
[
λ

∫ T

0

e−βtd(X∗,i
t −X t)

∣∣∣∣Ft−

]
, t ∈ (0, T ].

Using (E.20) and the predictability of the inventory processes,

Mt− = λ

∫ t

0

e−βtd(X∗,i
t −X t), t ∈ (0, T ].

From this, we can infer that M is continuous on [0, T ) and takes the form

Mt = λ

∫ t

0

e−βtd(X∗,i
t −X t).

The definition of MT reveals that the continuity holds on the entire interval [0, T ]. Thus
M is a bounded variation and continuous martingale, implying that it must be constant.
Hence,

0 = dMt = e−βtd(X∗,i
t −X t)

from which we conclude that dX∗,i
t = dX t. Since X∗,i

T = XT = 0 (recall that inventory
liquidation is enforced by T ) we have

0 = X∗,i
T −XT = xi − x+

∫ T

0

d(X∗,i
t −X t) = xi − x.

From this we conclude that xi = x for all i. Hence, xi = xj for all i, j. This completes the
proof of Theorem 4.4.
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E.5 Corollary 4.6

From Theorem 4.4, we can differentiate X∗,i on (0, T ) to get

Ẋ∗,i
t = − β

βT + 1
(xi − x)−

βN(N + 1)eβ
N+1
N−1

T + 2βN(N+1)
N−1

eβ
N+1
N−1

t

N((βT + 1)(N + 1) + 2)eβ
N+1
N−1

T − (N − 1)
x.

Moreover, we have

∆X∗,i
0 = −

(N + 1)
(
1 +Neβ

N+1
N−1

T
)

N((βT + 1)(N + 1) + 2)eβ
N+1
N−1

T − (N − 1)
x, ∆X∗,i

T = − xi − x

1 + βT
.

From this we can obtain the equilibrium impact process,

It = −
λN(N + 1)

(
eβ

N+1
N−1

t +Neβ
N+1
N−1

T
)

N ((βT + 1)(N + 1) + 2) e
(N+1)βT

N−1 − (N − 1)
x, t ∈ [0, T ),

where

∆I0 = λ
N∑
i=1

∆X∗,i
0 = −

N(N + 1)
(
1 +Neβ

N+1
N−1

T
)

N((βT + 1)(N + 1) + 2)eβ
N+1
N−1

T − (N − 1)
x

and

∆IT = λ
N∑
i=1

∆X∗,i
T = 0.

Now, a direct computation (omitted for the sake of brevity) gives Corollary 4.6.

F Proofs for Section 5

F.1 Theorem 5.1

We divide the proof into two steps, corresponding to the two claims in the theorem.

Step 1: Strategy convergence.

Note that z1 → N+1
N−1

β as ε ↓ 0. Writing τ1 = N+1
N−1

β we conclude

ez1T − 1

z1
→ eτ1T − 1

τ1
. (F.1)

On the other hand, we see that z2 → −∞ as ε ↓ 0. So,

γ1 =
1

z1 + β
+

1

z1 − β
ez1T → 1

τ1 + β
+

1

τ1 − β
eτ1T ,

γ2 =
1

z2 + β
+

1

z2 − β
ez2T → 0, and

ez2t − 1

z2
→ 0, t ∈ (0, T ].
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The limit of γ1(ez2t − 1)/γ2z2 therefore depends on the ratio of these last two terms. We
have

z2γ2 =
z2

z2 + β
+

z2
z2 − β

ez2T → 1, and ez2t − 1 → −1, t ∈ (0, T ].

So,
γ1
γ2

ez2t − 1

z2
→ −

(
1

τ1 + β
+

1

τ1 − β
eτ1T

)
, t ∈ (0, T ],

and the limit is 0 if t = 0. Arguing similarly,

ρ− =
1

z1 − β
ez1T − γ1

γ2

1

z2 − β
ez2T → 1

τ1 − β
eτ1T .

Finally, we see that z3 ↑ ∞ as ε ↓ 0. Moreover,

εz3 = βε+ λ→ λ, and
ez3t − 1

ez3T
= e−z3(T−t) − e−z3T → 0, t ∈ [0, T ).

When t = T , the latter converges to 1. Therefore,

λ(ez3t − 1)

εz3ez3T
→ 0, t ∈ [0, T ), and

λ(ez3T − 1)

εz3ez3T
→ 1. (F.2)

Applying (F.1)–(F.2) yields that as ε ↓ 0,

ft → 1− βt

1 + βT
, t ∈ [0, T ),

fT → 0,

gt → 1−
β

τ1−β
eτ1T t+ eτ1t−1

τ1
+ 1

τ1+β
+ 1

τ1−β
eτ1T

β
τ1−β

eτ1TT + eτ1T−1
τ1

+ 1
τ1+β

+ 1
τ1−β

eτ1T
, t ∈ (0, T ],

g0 → 1.

Rearranging these expressions shows agreement with Theorem 4.4 on (0, T ).
It remains to upgrade the pointwise convergence to locally uniform on (0, T ). To this

end, we first claim that f and g are monotone decreasing. As z3 ≥ 0 for all ε we have

ḟt = −
β + λez3t

εez3T

βT + λ(ez3T−1)

εz3ez3T

≤ 0.

Turning to ġ we claim that

ġt = −
βρ− + ez1t − γ1

γ2
ez2t

βρ−T + ez1T−1
z1

− γ1
γ2

ez2T−1
z2

≤ 0. (F.3)

Indeed, from the form of z1 and z2 we can see that z1 > 0, z2 < 0, and z1 increases and z2
decreases as ε ↓ 0. Taking ε ↑ ∞ we deduce

z1 > lim
ε↑∞

z1 = β, z2 < lim
ε↑∞

z2 = −β.
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These observations allow us to conclude γ1 ≥ 0 and γ2 ≤ 0. Rearranging the expression
for ρ−, we get

ρ− = ez1T
(z2 + β) (z1 − β) e(z2−z1)T − (z2 − β) (z1 + β)

(z1 + β) (− (z2 + β) ez2T − (z2 − β)) (z1 − β)
.

The denominator is positive by the bounds on z1 and z2. As (z2 + β)(z1 − β) ≤ 0 and
z2 − z1 ≤ 0 we have

ρ− ≥ ez1T
(z2 + β) (z1 − β)− (z2 − β) (z1 + β)

(z1 + β) (− (z2 + β) ez2T − (z2 − β)) (z1 − β)

= ez1T
2β(z1 − z2)

(z1 + β) (− (z2 + β) ez2T − (z2 − β)) (z1 − β)
≥ 0.

Taken together we see that each term in the numerator and denominator of ġ is positive and
so (F.3) follows.

In summary, the monotone functions f and g converge pointwise to f and g which are
continuous on (0, T ). By Dini’s theorem, it follows that the convergence is locally uniform.

Step 2: Cost convergence.

We first consider the limit of the equilibrium impact cost from Corollary 3.6. Along the lines
of Step 1, it can be checked that as ε ↓ 0,

Ξ → 1 + βT, (F.4)

Ψ → β

τ1 − β
eτ1TT +

eτ1T − 1

τ1
+

1

τ1 + β
+

1

τ1 − β
eτ1T , (F.5)

h1 = ρ−(Ψ + βϱ1) + r1 (F.6)

→ 1

τ1 − β
eτ1T

(
β

τ1 − β
eτ1TT +

eτ1T − 1

τ1
+

1

τ1 + β
+

1

τ1 − β
eτ1T + β

eτ1T − 1

τ1(τ1 + β)

)
+

e2τ1T − 1

2τ1(τ1 + β)
− 1

2

(
1

τ1 + β
+

1

τ1 − β
eτ1T

)2

+
1

(τ1 + β)2
+

1

(τ1 − β)(τ1 + β)
eτ1T ,

and

h2 = ρ−Ξ + βϱ1 + λε−1m1 →
1

τ1 − β
eτ1T (1 + βT ) + β

eτ1T − 1

τ1(τ1 + β)
+

eτ1T

τ1 + β
. (F.7)

Using (F.5) and (F.7), we get (after simplification) that h2Ψ
−1 → 1, so

h2
ΨΞ

→ 1

1 + βT
. (F.8)

A protracted algebraic manipulation of the quantities in (F.5) and (F.6) also yields

h1
Ψ2

→
N2(N + 1)

(((
βT + 1

2

)
(N + 1) + 3

)
e

2(N+1)βT
N−1 − 2(N−1)

N2

(
Ne

(N+1)βT
N−1 + 1

4

))
(
N ((βT + 1) (N + 1) + 2) e

(N+1)βT
N−1 − (N − 1)

)2 . (F.9)
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Passing to the limit in the expression of the impact cost in Corollary 3.6 and applying (F.8)
and (F.9) gives the desired convergence to the corresponding term in Corollary 4.6.

We now turn to the instantaneous cost in Corollary 3.6. Once again, a careful accounting
allows us to extract the limits

εh3 = εβρ−(Ψ + ϱ0) + εr0 →
λ(N − 1)

2

(
1

τ1 + β
+

1

τ1 − β
eτ1T

)2

, (F.10)

εh4 = εβ(2Ξ− βT ) + λ2ε−1e−z3Tq3 →
λ

2
, (F.11)

and
εh5 = εβρ−Ξ + εβϱ0 + λm0 → 0. (F.12)

Using (F.5) and (F.10), we obtain after simplification,

εh3
2Ψ2

→ λ(N − 1)(N + 1)2(1 +Neβ
N+1
N−1

T )2

4
(
N((βT + 1)(N + 1) + 2)eβ

N+1
N−1

T − (N − 1)
)2 . (F.13)

Appealing to (F.4), (F.5), (F.11), and (F.12) we similarly find

εh4
2Ξ2

→ λ

4(βT + 1)2
and

εh5
ΞΨ

→ 0. (F.14)

Applying the limits (F.13) and (F.14) to the instantaneous cost expression in Corollary 3.6
shows that this cost converges to the block cost in Corollary 4.6 for the specific choice
ϑ0 =

λ(N−1)
2

and ϑT = λ
2
.

It remains to sharpen this conclusion in order to show that for any δ ∈ (0, T ),

ε

∫ δ

0

(Ẋ∗,ε,i
t )2dt→ ϑ0(∆X

∗,0,i
0 )2 and ε

∫ T

δ

(Ẋ∗,ε,i
t )2dt→ ϑT (∆X

∗,0,i
T )2.

Observe from Theorem 3.5 that

(Ẋ∗,ε,i
t )2 =

h3t
Ψ2
x2 +

h4t
Ξ2

(xi − x)2 +
2h5t
ΞΨ

x(xi − x)

for the same functions

h3t =

[
βρ− + ez1t − γ1

γ2
ez2t
]2
, h4t =

[
β +

λez3t

εez3T

]2
,

h5t =

[
βρ− + ez1t − γ1

γ2
ez2t
] [
β +

λez3t

εez3T

]
that arise in the proof of Corollary 4.6. Letting ha,bi :=

∫ b

a
hitdt for i = 3, 4, 5 we see that

ε

∫ T

δ

(Ẋ∗,ε,i
t )2dt =

εhδ,T3
Ψ2

x2 +
εhδ,T4
Ξ2

(xi − x)2 +
2εhδ,T5
ΞΨ

x(xi − x), (F.15)
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and the analogous expression holds for
∫ δ

0
(Ẋ∗,ε,i

t )2dt.
To prove the claim it suffices to show the limit

ε

∫ T

δ

(Ẋ∗,ε,i
t )2dt→ ϑT (∆X

∗,0,i
T )2 =

ϑT (x
i − x)2

(βT + 1)2

as, by splitting
∫ T

0
(Ẋ∗,ε,i

t )2dt, the remaining limit immediately follows from the convergence
of the full instantaneous cost to the full block cost that we have already shown. To this end
we must evaluate the hδ,Ti . By expanding the product form of the hit and integrating we get

hδ,T3 = β2ρ2−(T − δ) + 2βρ−

[
ez1T − ez1δ

z1
− γ1
γ2

ez2T − ez2δ

z2

]
+
e2z1T − e2z1δ

2z1
+
γ21
γ22

e2z2T − e2z2δ

2z2
− 2

γ1
γ2

e(z1+z2)T − e(z1+z2)δ

z1 + z2
,

hδ,T4 = β2(T − δ) +
2βλ(ez3T − ez3δ)

εz3ez3T
+
λ2(e2z3T − ez3δ)

2ε2z3e2z3T
, and

hδ,T5 = β2ρ−(T − δ) + β

[
ez1T − ez1δ

z1
− γ1
γ2

ez2T − ez2δ

z2

]
+
βλρ−(e

z3T − ez3δ)

εz3ez3T
+

λ

εez3T

[
e(z1+z3)T − e(z1+z3)δ

z1 + z3
− γ1
γ2

e(z2+z3)T − e(z2+z3)δ

z2 + z3

]
.

Once again, carefully passing to the limit in a fashion analogous to (F.10)–(F.12) yields

εhδ,T3 → 0, εhδ,T4 → λ

2
, and εhδ,T5 → 0. (F.16)

Passing to the limit across (F.15) and combining (F.16) with (F.4) and (F.5) completes the
proof.
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G Table of Constants

Constant Definition

z1
−λ(N−1)+

√
(N−1)2λ2+4βε(N+1)λ+4β2ε2

2ε

z2
−λ(N−1)−

√
(N−1)2λ2+4βε(N+1)λ+4β2ε2

2ε

z3 β + ε−1λ
γi

1
zi+β

+ 1
zi−β

eziT , i = 1, 2.

bi
eziT−1

zi
, i = 1, 2, 3

q0 b3e
−z3T

qi bi3e
−z3T , i = 1, 2, 3

bij
e(zi+zj)T−1

zi+zj
, i, j = 1, 2, 3

ϱ0 b1 − γ1
γ2
b2

ϱ1
b1

(z1+β)
− γ1

γ2

b2
(z2+β)

ρ0 ez1T − γ1
γ2
ez2T

ρ±
1

z1±β
ez1T − γ1

γ2
1

z2±β
ez2T

m0 q1 − γ1
γ2
q2

m1
q1

(z1+β)
− γ1

γ2

q2
(z2+β)

r0 b11 +
γ2
1

γ2
2
b22 − 2γ1

γ2
b12

r1
b11

(z1+β)
+

γ2
1

γ2
2

b22
(z2+β)

− γ1
γ2

[
1

z1+β
+ 1

z2+β

]
b12

p ρ0 + βρ− + ε−1λN(ρ+ + ρ−)
Ψ ϱ0 + βρ−T
Ξ βT + λε−1q0
ψ p+ ε−1φΨ
ξ z3 + ε−1φΞ
h1 ρ−(Ψ + βϱ1) + r1
h2 ρ−Ξ + βϱ1 + λε−1m1

h3 βρ−(Ψ + ϱ0) + r0
h4 β(2Ξ− βT ) + λ2ε−2e−z3Tq3
h5 βρ−Ξ + βϱ0 + λε−1m0

Table 1: Main Constants
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